TimeSeriesPredictor.make_future_data_frame¶
- TimeSeriesPredictor.make_future_data_frame(data: TimeSeriesDataFrame | DataFrame | Path | str) DataFrame[source]¶
- Generate a data frame with the item_id and timestamp values corresponding to the forecast horizon. - Parameters:
- data (Union[TimeSeriesDataFrame, pd.DataFrame, Path, str]) – Historical time series data. 
- Returns:
- forecast_horizon – Data frame with columns item_id and timestamp corresponding to the forecast horizon. For each item ID in data, forecast_horizon will contain the timestamps for the next prediction_length time steps, following the end of each series in the input data. 
- Return type:
- pd.DataFrame 
 - Examples - >>> print(data) target item_id timestamp A 2024-01-01 0 2024-01-02 1 2024-01-03 2 B 2024-04-07 3 2024-04-08 4 >>> predictor = TimeSeriesPredictor(prediction_length=2, freq="D") >>> print(predictor.make_future_data_frame(data)) item_id timestamp 0 A 2024-01-04 0 A 2024-01-05 1 B 2024-04-09 1 B 2024-04-10