AutoMM Detection - Quick Start on a Tiny COCO Format Dataset

Open In Colab Open In SageMaker Studio Lab

In this section, our goal is to fast finetune a pretrained model on a small dataset in COCO format, and evaluate on its test set. Both training and test sets are in COCO format. See Convert Data to COCO Format for how to convert other datasets to COCO format.

Setting up the imports

Make sure mmcv and mmdet are installed:

#!pip install torch==2.1.0 torchvision==0.16.0 torchaudio==2.1.0  # To use object detection, downgrade the torch version if it's >=2.2
!mim install "mmcv==2.1.0"  # For Google Colab, use the line below instead to install mmcv
#!pip install "mmcv==2.1.0" -f https://download.openmmlab.com/mmcv/dist/cu121/torch2.1.0/index.html
!pip install "mmdet==3.2.0"
Hide code cell output
Looking in links: https://download.openmmlab.com/mmcv/dist/cu124/torch2.5.0/index.html
Requirement already satisfied: mmcv==2.1.0 in /home/ci/opt/venv/lib/python3.11/site-packages (2.1.0)
Requirement already satisfied: addict in /home/ci/opt/venv/lib/python3.11/site-packages (from mmcv==2.1.0) (2.4.0)
Requirement already satisfied: mmengine>=0.3.0 in /home/ci/opt/venv/lib/python3.11/site-packages (from mmcv==2.1.0) (0.10.5)
Requirement already satisfied: numpy in /home/ci/opt/venv/lib/python3.11/site-packages (from mmcv==2.1.0) (1.26.4)
Requirement already satisfied: packaging in /home/ci/opt/venv/lib/python3.11/site-packages (from mmcv==2.1.0) (24.2)
Requirement already satisfied: Pillow in /home/ci/opt/venv/lib/python3.11/site-packages (from mmcv==2.1.0) (11.1.0)
Requirement already satisfied: pyyaml in /home/ci/opt/venv/lib/python3.11/site-packages (from mmcv==2.1.0) (6.0.2)
Requirement already satisfied: yapf in /home/ci/opt/venv/lib/python3.11/site-packages (from mmcv==2.1.0) (0.43.0)
Requirement already satisfied: matplotlib in /home/ci/opt/venv/lib/python3.11/site-packages (from mmengine>=0.3.0->mmcv==2.1.0) (3.10.0)
Requirement already satisfied: rich in /home/ci/opt/venv/lib/python3.11/site-packages (from mmengine>=0.3.0->mmcv==2.1.0) (13.9.4)
Requirement already satisfied: termcolor in /home/ci/opt/venv/lib/python3.11/site-packages (from mmengine>=0.3.0->mmcv==2.1.0) (2.5.0)
Requirement already satisfied: opencv-python>=3 in /home/ci/opt/venv/lib/python3.11/site-packages (from mmengine>=0.3.0->mmcv==2.1.0) (4.11.0.86)
Requirement already satisfied: platformdirs>=3.5.1 in /home/ci/opt/venv/lib/python3.11/site-packages (from yapf->mmcv==2.1.0) (4.3.6)
Requirement already satisfied: contourpy>=1.0.1 in /home/ci/opt/venv/lib/python3.11/site-packages (from matplotlib->mmengine>=0.3.0->mmcv==2.1.0) (1.3.1)
Requirement already satisfied: cycler>=0.10 in /home/ci/opt/venv/lib/python3.11/site-packages (from matplotlib->mmengine>=0.3.0->mmcv==2.1.0) (0.12.1)
Requirement already satisfied: fonttools>=4.22.0 in /home/ci/opt/venv/lib/python3.11/site-packages (from matplotlib->mmengine>=0.3.0->mmcv==2.1.0) (4.55.8)
Requirement already satisfied: kiwisolver>=1.3.1 in /home/ci/opt/venv/lib/python3.11/site-packages (from matplotlib->mmengine>=0.3.0->mmcv==2.1.0) (1.4.8)
Requirement already satisfied: pyparsing>=2.3.1 in /home/ci/opt/venv/lib/python3.11/site-packages (from matplotlib->mmengine>=0.3.0->mmcv==2.1.0) (3.2.1)
Requirement already satisfied: python-dateutil>=2.7 in /home/ci/opt/venv/lib/python3.11/site-packages (from matplotlib->mmengine>=0.3.0->mmcv==2.1.0) (2.9.0.post0)
Requirement already satisfied: markdown-it-py>=2.2.0 in /home/ci/opt/venv/lib/python3.11/site-packages (from rich->mmengine>=0.3.0->mmcv==2.1.0) (3.0.0)
Requirement already satisfied: pygments<3.0.0,>=2.13.0 in /home/ci/opt/venv/lib/python3.11/site-packages (from rich->mmengine>=0.3.0->mmcv==2.1.0) (2.19.1)
Requirement already satisfied: mdurl~=0.1 in /home/ci/opt/venv/lib/python3.11/site-packages (from markdown-it-py>=2.2.0->rich->mmengine>=0.3.0->mmcv==2.1.0) (0.1.2)
Requirement already satisfied: six>=1.5 in /home/ci/opt/venv/lib/python3.11/site-packages (from python-dateutil>=2.7->matplotlib->mmengine>=0.3.0->mmcv==2.1.0) (1.17.0)
Requirement already satisfied: mmdet==3.2.0 in /home/ci/opt/venv/lib/python3.11/site-packages (3.2.0)
Requirement already satisfied: matplotlib in /home/ci/opt/venv/lib/python3.11/site-packages (from mmdet==3.2.0) (3.10.0)
Requirement already satisfied: numpy in /home/ci/opt/venv/lib/python3.11/site-packages (from mmdet==3.2.0) (1.26.4)
Requirement already satisfied: pycocotools in /home/ci/opt/venv/lib/python3.11/site-packages (from mmdet==3.2.0) (2.0.8)
Requirement already satisfied: scipy in /home/ci/opt/venv/lib/python3.11/site-packages (from mmdet==3.2.0) (1.15.1)
Requirement already satisfied: shapely in /home/ci/opt/venv/lib/python3.11/site-packages (from mmdet==3.2.0) (2.0.7)
Requirement already satisfied: six in /home/ci/opt/venv/lib/python3.11/site-packages (from mmdet==3.2.0) (1.17.0)
Requirement already satisfied: terminaltables in /home/ci/opt/venv/lib/python3.11/site-packages (from mmdet==3.2.0) (3.1.10)
Requirement already satisfied: tqdm in /home/ci/opt/venv/lib/python3.11/site-packages (from mmdet==3.2.0) (4.67.1)
Requirement already satisfied: contourpy>=1.0.1 in /home/ci/opt/venv/lib/python3.11/site-packages (from matplotlib->mmdet==3.2.0) (1.3.1)
Requirement already satisfied: cycler>=0.10 in /home/ci/opt/venv/lib/python3.11/site-packages (from matplotlib->mmdet==3.2.0) (0.12.1)
Requirement already satisfied: fonttools>=4.22.0 in /home/ci/opt/venv/lib/python3.11/site-packages (from matplotlib->mmdet==3.2.0) (4.55.8)
Requirement already satisfied: kiwisolver>=1.3.1 in /home/ci/opt/venv/lib/python3.11/site-packages (from matplotlib->mmdet==3.2.0) (1.4.8)
Requirement already satisfied: packaging>=20.0 in /home/ci/opt/venv/lib/python3.11/site-packages (from matplotlib->mmdet==3.2.0) (24.2)
Requirement already satisfied: pillow>=8 in /home/ci/opt/venv/lib/python3.11/site-packages (from matplotlib->mmdet==3.2.0) (11.1.0)
Requirement already satisfied: pyparsing>=2.3.1 in /home/ci/opt/venv/lib/python3.11/site-packages (from matplotlib->mmdet==3.2.0) (3.2.1)
Requirement already satisfied: python-dateutil>=2.7 in /home/ci/opt/venv/lib/python3.11/site-packages (from matplotlib->mmdet==3.2.0) (2.9.0.post0)

To start, let’s import MultiModalPredictor:

from autogluon.multimodal import MultiModalPredictor
/home/ci/opt/venv/lib/python3.11/site-packages/mmengine/optim/optimizer/zero_optimizer.py:11: DeprecationWarning: `TorchScript` support for functional optimizers is deprecated and will be removed in a future PyTorch release. Consider using the `torch.compile` optimizer instead.
  from torch.distributed.optim import \

And also import some other packages that will be used in this tutorial:

import os
import time

from autogluon.core.utils.loaders import load_zip

Downloading Data

We have the sample dataset ready in the cloud. Let’s download it:

zip_file = "https://automl-mm-bench.s3.amazonaws.com/object_detection_dataset/tiny_motorbike_coco.zip"
download_dir = "./tiny_motorbike_coco"

load_zip.unzip(zip_file, unzip_dir=download_dir)
data_dir = os.path.join(download_dir, "tiny_motorbike")
train_path = os.path.join(data_dir, "Annotations", "trainval_cocoformat.json")
test_path = os.path.join(data_dir, "Annotations", "test_cocoformat.json")
Downloading ./tiny_motorbike_coco/file.zip from https://automl-mm-bench.s3.amazonaws.com/object_detection_dataset/tiny_motorbike_coco.zip...
0%|          | 0.00/21.8M [00:00<?, ?iB/s]
49%|████▊     | 10.6M/21.8M [00:00<00:00, 106MiB/s]
98%|█████████▊| 21.4M/21.8M [00:00<00:00, 107MiB/s]
100%|██████████| 21.8M/21.8M [00:00<00:00, 106MiB/s]

While using COCO format dataset, the input is the json annotation file of the dataset split. In this example, trainval_cocoformat.json is the annotation file of the train-and-validate split, and test_cocoformat.json is the annotation file of the test split.

Creating the MultiModalPredictor

We select the "medium_quality" presets, which uses a YOLOX-large model pretrained on COCO dataset. This preset is fast to finetune or inference, and easy to deploy. We also provide presets "high_quality" with a DINO-Resnet50 model and "best quality" with a DINO-SwinL model, with much higher performance but also slower and with higher GPU memory usage.

presets = "medium_quality"

We create the MultiModalPredictor with selected presets. We need to specify the problem_type to "object_detection", and also provide a sample_data_path for the predictor to infer the catgories of the dataset. Here we provide the train_path, and it also works using any other split of this dataset. And we also provide a path to save the predictor. It will be saved to a automatically generated directory with timestamp under AutogluonModels if path is not specified.

# Init predictor
import uuid

model_path = f"./tmp/{uuid.uuid4().hex}-quick_start_tutorial_temp_save"

predictor = MultiModalPredictor(
    problem_type="object_detection",
    sample_data_path=train_path,
    presets=presets,
    path=model_path,
)

Finetuning the Model

Learning rate, number of epochs, and batch_size are included in the presets, and thus no need to specify. Note that we use a two-stage learning rate option during finetuning by default, and the model head will have 100x learning rate. Using a two-stage learning rate with high learning rate only on head layers makes the model converge faster during finetuning. It usually gives better performance as well, especially on small datasets with hundreds or thousands of images. We also compute the time of the fit process here for better understanding the speed. We run it on a g4.2xlarge EC2 machine on AWS, and part of the command outputs are shown below:

start = time.time()
predictor.fit(train_path)  # Fit
train_end = time.time()
loading annotations into memory...
Done (t=0.00s)
creating index...
index created!
Downloading yolox_l_8x8_300e_coco_20211126_140236-d3bd2b23.pth from https://download.openmmlab.com/mmdetection/v2.0/yolox/yolox_l_8x8_300e_coco/yolox_l_8x8_300e_coco_20211126_140236-d3bd2b23.pth...
Loads checkpoint by local backend from path: yolox_l_8x8_300e_coco_20211126_140236-d3bd2b23.pth
The model and loaded state dict do not match exactly

size mismatch for bbox_head.multi_level_conv_cls.0.weight: copying a param with shape torch.Size([80, 256, 1, 1]) from checkpoint, the shape in current model is torch.Size([10, 256, 1, 1]).
size mismatch for bbox_head.multi_level_conv_cls.0.bias: copying a param with shape torch.Size([80]) from checkpoint, the shape in current model is torch.Size([10]).
size mismatch for bbox_head.multi_level_conv_cls.1.weight: copying a param with shape torch.Size([80, 256, 1, 1]) from checkpoint, the shape in current model is torch.Size([10, 256, 1, 1]).
size mismatch for bbox_head.multi_level_conv_cls.1.bias: copying a param with shape torch.Size([80]) from checkpoint, the shape in current model is torch.Size([10]).
size mismatch for bbox_head.multi_level_conv_cls.2.weight: copying a param with shape torch.Size([80, 256, 1, 1]) from checkpoint, the shape in current model is torch.Size([10, 256, 1, 1]).
size mismatch for bbox_head.multi_level_conv_cls.2.bias: copying a param with shape torch.Size([80]) from checkpoint, the shape in current model is torch.Size([10]).
=================== System Info ===================
AutoGluon Version:  1.2.1b20250205
Python Version:     3.11.9
Operating System:   Linux
Platform Machine:   x86_64
Platform Version:   #1 SMP Tue Sep 24 10:00:37 UTC 2024
CPU Count:          8
Pytorch Version:    2.5.1+cu124
CUDA Version:       12.4
Memory Avail:       28.41 GB / 30.95 GB (91.8%)
Disk Space Avail:   WARNING, an exception (FileNotFoundError) occurred while attempting to get available disk space. Consider opening a GitHub Issue.
===================================================
Using default root folder: ./tiny_motorbike_coco/tiny_motorbike/Annotations/... Specify `model.mmdet_image.coco_root=...` in hyperparameters if you think it is wrong.
AutoMM starts to create your model. ✨✨✨

To track the learning progress, you can open a terminal and launch Tensorboard:
    ```shell
    # Assume you have installed tensorboard
    tensorboard --logdir /home/ci/autogluon/docs/tutorials/multimodal/object_detection/quick_start/tmp/95ba80ae08dd4fb69f42bff3457eddca-quick_start_tutorial_temp_save
    ```
Seed set to 0
0%|          | 0.00/217M [00:00<?, ?iB/s]
0%|          | 97.3k/217M [00:00<04:39, 776kiB/s]
0%|          | 441k/217M [00:00<01:48, 2.00MiB/s]
0%|          | 1.03M/217M [00:00<01:00, 3.58MiB/s]
1%|          | 1.51M/217M [00:00<00:53, 4.01MiB/s]
1%|          | 2.10M/217M [00:00<00:47, 4.50MiB/s]
1%|          | 2.69M/217M [00:00<00:45, 4.71MiB/s]
2%|▏         | 3.28M/217M [00:00<00:43, 4.92MiB/s]
2%|▏         | 3.87M/217M [00:00<00:42, 4.97MiB/s]
2%|▏         | 4.46M/217M [00:01<00:41, 5.09MiB/s]
2%|▏         | 5.00M/217M [00:01<00:41, 5.16MiB/s]
3%|▎         | 5.52M/217M [00:01<00:40, 5.17MiB/s]
3%|▎         | 6.09M/217M [00:01<00:41, 5.13MiB/s]
3%|▎         | 6.68M/217M [00:01<00:40, 5.21MiB/s]
3%|▎         | 7.29M/217M [00:01<00:38, 5.46MiB/s]
4%|▎         | 7.84M/217M [00:01<00:39, 5.34MiB/s]
4%|▍         | 8.38M/217M [00:01<00:45, 4.55MiB/s]
4%|▍         | 8.94M/217M [00:01<00:43, 4.82MiB/s]
4%|▍         | 9.45M/217M [00:02<00:44, 4.65MiB/s]
5%|▍         | 9.94M/217M [00:02<00:43, 4.72MiB/s]
5%|▍         | 10.4M/217M [00:02<00:44, 4.68MiB/s]
5%|▌         | 10.9M/217M [00:02<00:43, 4.77MiB/s]
5%|▌         | 11.4M/217M [00:02<00:42, 4.81MiB/s]
5%|▌         | 11.9M/217M [00:02<00:42, 4.81MiB/s]
6%|▌         | 12.4M/217M [00:02<00:41, 4.95MiB/s]
6%|▌         | 12.9M/217M [00:02<00:41, 4.91MiB/s]
6%|▌         | 13.5M/217M [00:02<00:41, 4.96MiB/s]
6%|▋         | 13.9M/217M [00:02<00:44, 4.55MiB/s]
7%|▋         | 14.4M/217M [00:03<00:45, 4.42MiB/s]
7%|▋         | 14.9M/217M [00:03<00:45, 4.43MiB/s]
7%|▋         | 15.3M/217M [00:03<00:46, 4.30MiB/s]
7%|▋         | 15.7M/217M [00:03<00:47, 4.27MiB/s]
7%|▋         | 16.2M/217M [00:03<00:46, 4.31MiB/s]
8%|▊         | 16.6M/217M [00:03<00:46, 4.30MiB/s]
8%|▊         | 17.1M/217M [00:03<00:52, 3.81MiB/s]
8%|▊         | 17.4M/217M [00:03<00:56, 3.55MiB/s]
8%|▊         | 17.8M/217M [00:03<00:58, 3.43MiB/s]
8%|▊         | 18.2M/217M [00:04<00:59, 3.33MiB/s]
9%|▊         | 18.5M/217M [00:04<00:59, 3.36MiB/s]
9%|▊         | 18.9M/217M [00:04<00:59, 3.34MiB/s]
9%|▉         | 19.2M/217M [00:04<01:05, 3.00MiB/s]
9%|▉         | 19.5M/217M [00:04<01:06, 2.98MiB/s]
9%|▉         | 19.8M/217M [00:04<01:13, 2.70MiB/s]
9%|▉         | 20.1M/217M [00:04<01:24, 2.33MiB/s]
9%|▉         | 20.3M/217M [00:04<01:31, 2.16MiB/s]
9%|▉         | 20.5M/217M [00:05<01:34, 2.08MiB/s]
10%|▉         | 20.8M/217M [00:05<01:40, 1.97MiB/s]
10%|▉         | 21.0M/217M [00:05<01:40, 1.95MiB/s]
10%|▉         | 21.2M/217M [00:05<01:41, 1.94MiB/s]
10%|▉         | 21.3M/217M [00:05<01:42, 1.91MiB/s]
10%|▉         | 21.5M/217M [00:05<01:43, 1.90MiB/s]
10%|█         | 21.7M/217M [00:05<01:42, 1.91MiB/s]
10%|█         | 21.9M/217M [00:05<01:42, 1.90MiB/s]
10%|█         | 22.1M/217M [00:05<01:42, 1.91MiB/s]
10%|█         | 22.3M/217M [00:06<01:41, 1.92MiB/s]
10%|█         | 22.5M/217M [00:06<01:40, 1.93MiB/s]
10%|█         | 22.7M/217M [00:06<01:39, 1.95MiB/s]
11%|█         | 22.9M/217M [00:06<01:39, 1.95MiB/s]
11%|█         | 23.1M/217M [00:06<01:38, 1.97MiB/s]
11%|█         | 23.4M/217M [00:06<01:37, 1.98MiB/s]
11%|█         | 23.6M/217M [00:06<01:37, 1.99MiB/s]
11%|█         | 23.8M/217M [00:06<01:36, 2.00MiB/s]
11%|█         | 24.0M/217M [00:06<01:35, 2.03MiB/s]
11%|█         | 24.2M/217M [00:07<01:34, 2.04MiB/s]
11%|█         | 24.4M/217M [00:07<01:33, 2.06MiB/s]
11%|█▏        | 24.6M/217M [00:07<01:33, 2.07MiB/s]
11%|█▏        | 24.9M/217M [00:07<01:31, 2.11MiB/s]
12%|█▏        | 25.1M/217M [00:07<01:30, 2.13MiB/s]
12%|█▏        | 25.3M/217M [00:07<01:29, 2.14MiB/s]
12%|█▏        | 25.6M/217M [00:07<01:28, 2.17MiB/s]
12%|█▏        | 25.8M/217M [00:07<01:27, 2.18MiB/s]
12%|█▏        | 26.0M/217M [00:07<01:27, 2.19MiB/s]
12%|█▏        | 26.3M/217M [00:07<01:25, 2.23MiB/s]
12%|█▏        | 26.5M/217M [00:08<01:25, 2.24MiB/s]
12%|█▏        | 26.7M/217M [00:08<01:24, 2.26MiB/s]
12%|█▏        | 27.0M/217M [00:08<01:22, 2.30MiB/s]
13%|█▎        | 27.2M/217M [00:08<01:22, 2.30MiB/s]
13%|█▎        | 27.5M/217M [00:08<01:21, 2.33MiB/s]
13%|█▎        | 27.7M/217M [00:08<01:20, 2.35MiB/s]
13%|█▎        | 28.0M/217M [00:08<01:19, 2.37MiB/s]
13%|█▎        | 28.2M/217M [00:08<01:19, 2.39MiB/s]
13%|█▎        | 28.5M/217M [00:08<01:18, 2.39MiB/s]
13%|█▎        | 28.7M/217M [00:08<01:18, 2.41MiB/s]
13%|█▎        | 29.0M/217M [00:09<01:25, 2.20MiB/s]
13%|█▎        | 29.2M/217M [00:09<01:31, 2.06MiB/s]
14%|█▎        | 29.4M/217M [00:09<01:34, 1.98MiB/s]
14%|█▎        | 29.6M/217M [00:09<01:34, 1.98MiB/s]
14%|█▎        | 29.8M/217M [00:09<01:37, 1.93MiB/s]
14%|█▍        | 30.0M/217M [00:09<01:45, 1.78MiB/s]
14%|█▍        | 30.2M/217M [00:09<01:52, 1.67MiB/s]
14%|█▍        | 30.3M/217M [00:09<01:55, 1.62MiB/s]
14%|█▍        | 30.5M/217M [00:10<01:58, 1.58MiB/s]
14%|█▍        | 30.7M/217M [00:10<02:00, 1.55MiB/s]
14%|█▍        | 30.8M/217M [00:10<02:02, 1.52MiB/s]
14%|█▍        | 31.0M/217M [00:10<02:02, 1.52MiB/s]
14%|█▍        | 31.1M/217M [00:10<02:00, 1.55MiB/s]
14%|█▍        | 31.3M/217M [00:10<02:00, 1.54MiB/s]
14%|█▍        | 31.5M/217M [00:10<01:59, 1.56MiB/s]
15%|█▍        | 31.6M/217M [00:10<01:58, 1.57MiB/s]
15%|█▍        | 31.8M/217M [00:10<01:57, 1.58MiB/s]
15%|█▍        | 32.0M/217M [00:10<01:55, 1.60MiB/s]
15%|█▍        | 32.1M/217M [00:11<01:55, 1.61MiB/s]
15%|█▍        | 32.3M/217M [00:11<01:54, 1.61MiB/s]
15%|█▍        | 32.5M/217M [00:11<01:53, 1.63MiB/s]
15%|█▌        | 32.7M/217M [00:11<01:51, 1.66MiB/s]
15%|█▌        | 32.9M/217M [00:11<01:50, 1.67MiB/s]
15%|█▌        | 33.0M/217M [00:11<02:09, 1.42MiB/s]
15%|█▌        | 33.3M/217M [00:11<01:50, 1.66MiB/s]
15%|█▌        | 33.5M/217M [00:11<01:57, 1.57MiB/s]
15%|█▌        | 33.6M/217M [00:12<02:02, 1.50MiB/s]
16%|█▌        | 33.8M/217M [00:12<02:08, 1.43MiB/s]
16%|█▌        | 33.9M/217M [00:12<02:08, 1.43MiB/s]
16%|█▌        | 34.1M/217M [00:12<02:07, 1.43MiB/s]
16%|█▌        | 34.2M/217M [00:12<02:05, 1.46MiB/s]
16%|█▌        | 34.4M/217M [00:12<02:05, 1.45MiB/s]
16%|█▌        | 34.6M/217M [00:12<02:02, 1.49MiB/s]
16%|█▌        | 34.7M/217M [00:12<02:00, 1.52MiB/s]
16%|█▌        | 34.9M/217M [00:12<01:58, 1.53MiB/s]
16%|█▌        | 35.1M/217M [00:13<01:57, 1.55MiB/s]
16%|█▌        | 35.2M/217M [00:13<01:54, 1.59MiB/s]
16%|█▋        | 35.4M/217M [00:13<01:54, 1.59MiB/s]
16%|█▋        | 35.6M/217M [00:13<01:52, 1.62MiB/s]
16%|█▋        | 35.8M/217M [00:13<01:50, 1.65MiB/s]
17%|█▋        | 35.9M/217M [00:13<01:50, 1.65MiB/s]
17%|█▋        | 36.1M/217M [00:13<01:48, 1.67MiB/s]
17%|█▋        | 36.3M/217M [00:13<01:47, 1.68MiB/s]
17%|█▋        | 36.5M/217M [00:13<01:47, 1.69MiB/s]
17%|█▋        | 36.7M/217M [00:13<01:46, 1.70MiB/s]
17%|█▋        | 36.8M/217M [00:14<01:45, 1.71MiB/s]
17%|█▋        | 37.0M/217M [00:14<01:47, 1.67MiB/s]
17%|█▋        | 37.2M/217M [00:14<01:57, 1.53MiB/s]
17%|█▋        | 37.3M/217M [00:14<02:13, 1.35MiB/s]
17%|█▋        | 37.5M/217M [00:14<02:28, 1.21MiB/s]
17%|█▋        | 37.6M/217M [00:14<02:39, 1.12MiB/s]
17%|█▋        | 37.7M/217M [00:14<02:46, 1.08MiB/s]
17%|█▋        | 37.8M/217M [00:14<02:53, 1.04MiB/s]
17%|█▋        | 37.9M/217M [00:15<02:57, 1.01MiB/s]
18%|█▊        | 38.1M/217M [00:15<02:56, 1.02MiB/s]
18%|█▊        | 38.2M/217M [00:15<02:56, 1.02MiB/s]
18%|█▊        | 38.3M/217M [00:15<02:56, 1.01MiB/s]
18%|█▊        | 38.4M/217M [00:15<02:53, 1.03MiB/s]
18%|█▊        | 38.5M/217M [00:15<02:51, 1.04MiB/s]
18%|█▊        | 38.6M/217M [00:15<02:49, 1.05MiB/s]
18%|█▊        | 38.7M/217M [00:15<02:46, 1.07MiB/s]
18%|█▊        | 38.8M/217M [00:15<02:43, 1.09MiB/s]
18%|█▊        | 39.0M/217M [00:16<02:40, 1.11MiB/s]
18%|█▊        | 39.1M/217M [00:16<02:35, 1.14MiB/s]
18%|█▊        | 39.2M/217M [00:16<02:35, 1.14MiB/s]
18%|█▊        | 39.4M/217M [00:16<02:30, 1.18MiB/s]
18%|█▊        | 39.5M/217M [00:16<02:29, 1.19MiB/s]
18%|█▊        | 39.6M/217M [00:16<02:26, 1.21MiB/s]
18%|█▊        | 39.7M/217M [00:16<02:23, 1.23MiB/s]
18%|█▊        | 39.9M/217M [00:16<02:22, 1.24MiB/s]
18%|█▊        | 40.0M/217M [00:16<02:17, 1.29MiB/s]
18%|█▊        | 40.2M/217M [00:16<02:17, 1.29MiB/s]
19%|█▊        | 40.3M/217M [00:17<02:27, 1.20MiB/s]
19%|█▊        | 40.4M/217M [00:17<02:23, 1.23MiB/s]
19%|█▊        | 40.6M/217M [00:17<02:28, 1.19MiB/s]
19%|█▊        | 40.7M/217M [00:17<02:34, 1.15MiB/s]
19%|█▉        | 40.8M/217M [00:17<02:48, 1.05MiB/s]
19%|█▉        | 40.9M/217M [00:17<03:02, 968kiB/s]
19%|█▉        | 41.0M/217M [00:17<03:11, 922kiB/s]
19%|█▉        | 41.1M/217M [00:17<03:22, 871kiB/s]
19%|█▉        | 41.2M/217M [00:18<03:22, 870kiB/s]
19%|█▉        | 41.3M/217M [00:18<03:31, 831kiB/s]
19%|█▉        | 41.4M/217M [00:18<03:28, 842kiB/s]
19%|█▉        | 41.5M/217M [00:18<03:26, 851kiB/s]
19%|█▉        | 41.6M/217M [00:18<03:26, 851kiB/s]
19%|█▉        | 41.6M/217M [00:18<03:41, 792kiB/s]
19%|█▉        | 41.7M/217M [00:18<03:52, 754kiB/s]
19%|█▉        | 41.8M/217M [00:18<04:00, 728kiB/s]
19%|█▉        | 41.9M/217M [00:19<04:03, 720kiB/s]
19%|█▉        | 42.0M/217M [00:19<04:02, 724kiB/s]
19%|█▉        | 42.0M/217M [00:19<03:54, 747kiB/s]
19%|█▉        | 42.1M/217M [00:19<03:53, 750kiB/s]
19%|█▉        | 42.2M/217M [00:19<03:49, 764kiB/s]
19%|█▉        | 42.3M/217M [00:19<03:44, 781kiB/s]
20%|█▉        | 42.4M/217M [00:19<03:39, 798kiB/s]
20%|█▉        | 42.5M/217M [00:19<03:33, 817kiB/s]
20%|█▉        | 42.6M/217M [00:19<03:32, 821kiB/s]
20%|█▉        | 42.7M/217M [00:20<03:28, 839kiB/s]
20%|█▉        | 42.8M/217M [00:20<03:26, 845kiB/s]
20%|█▉        | 42.9M/217M [00:20<03:20, 872kiB/s]
20%|█▉        | 43.0M/217M [00:20<03:16, 888kiB/s]
20%|█▉        | 43.1M/217M [00:20<03:13, 899kiB/s]
20%|█▉        | 43.2M/217M [00:20<03:07, 926kiB/s]
20%|█▉        | 43.3M/217M [00:20<03:03, 950kiB/s]
20%|█▉        | 43.4M/217M [00:20<03:01, 958kiB/s]
20%|██        | 43.5M/217M [00:20<02:54, 995kiB/s]
20%|██        | 43.6M/217M [00:20<02:52, 1.01MiB/s]
20%|██        | 43.8M/217M [00:21<02:49, 1.02MiB/s]
20%|██        | 43.9M/217M [00:21<02:43, 1.06MiB/s]
20%|██        | 44.0M/217M [00:21<02:42, 1.07MiB/s]
20%|██        | 44.1M/217M [00:21<02:39, 1.08MiB/s]
20%|██        | 44.2M/217M [00:21<02:51, 1.01MiB/s]
20%|██        | 44.3M/217M [00:21<02:44, 1.05MiB/s]
20%|██        | 44.4M/217M [00:21<02:51, 1.01MiB/s]
20%|██        | 44.5M/217M [00:21<02:55, 982kiB/s]
21%|██        | 44.6M/217M [00:21<02:57, 971kiB/s]
21%|██        | 44.7M/217M [00:22<02:59, 963kiB/s]
21%|██        | 44.8M/217M [00:22<03:04, 936kiB/s]
21%|██        | 45.0M/217M [00:22<03:00, 957kiB/s]
21%|██        | 45.1M/217M [00:22<02:55, 982kiB/s]
21%|██        | 45.2M/217M [00:22<02:52, 1.00MiB/s]
21%|██        | 45.3M/217M [00:22<02:49, 1.02MiB/s]
21%|██        | 45.4M/217M [00:22<02:51, 1.00MiB/s]
21%|██        | 45.5M/217M [00:22<03:06, 921kiB/s]
21%|██        | 45.6M/217M [00:22<03:07, 915kiB/s]
21%|██        | 45.7M/217M [00:23<03:17, 868kiB/s]
21%|██        | 45.8M/217M [00:23<03:17, 868kiB/s]
21%|██        | 45.9M/217M [00:23<03:26, 830kiB/s]
21%|██        | 46.0M/217M [00:23<03:29, 819kiB/s]
21%|██        | 46.1M/217M [00:23<03:24, 837kiB/s]
21%|██        | 46.2M/217M [00:23<03:20, 853kiB/s]
21%|██▏       | 46.3M/217M [00:23<03:48, 749kiB/s]
21%|██▏       | 46.4M/217M [00:23<03:24, 837kiB/s]
21%|██▏       | 46.5M/217M [00:24<03:35, 791kiB/s]
21%|██▏       | 46.5M/217M [00:24<04:14, 671kiB/s]
21%|██▏       | 46.6M/217M [00:24<04:26, 641kiB/s]
21%|██▏       | 46.7M/217M [00:24<04:39, 610kiB/s]
22%|██▏       | 46.7M/217M [00:24<04:50, 587kiB/s]
22%|██▏       | 46.8M/217M [00:24<05:00, 567kiB/s]
22%|██▏       | 46.9M/217M [00:24<05:16, 539kiB/s]
22%|██▏       | 46.9M/217M [00:24<05:23, 527kiB/s]
22%|██▏       | 47.0M/217M [00:25<05:27, 520kiB/s]
22%|██▏       | 47.0M/217M [00:25<05:36, 506kiB/s]
22%|██▏       | 47.1M/217M [00:25<05:51, 484kiB/s]
22%|██▏       | 47.1M/217M [00:25<05:51, 484kiB/s]
22%|██▏       | 47.2M/217M [00:25<05:42, 497kiB/s]
22%|██▏       | 47.3M/217M [00:25<05:29, 516kiB/s]
22%|██▏       | 47.3M/217M [00:25<05:25, 521kiB/s]
22%|██▏       | 47.4M/217M [00:25<05:19, 531kiB/s]
22%|██▏       | 47.5M/217M [00:25<05:05, 556kiB/s]
22%|██▏       | 47.5M/217M [00:26<04:58, 569kiB/s]
22%|██▏       | 47.6M/217M [00:26<04:49, 585kiB/s]
22%|██▏       | 47.7M/217M [00:26<04:41, 603kiB/s]
22%|██▏       | 47.7M/217M [00:26<04:34, 617kiB/s]
22%|██▏       | 47.8M/217M [00:26<04:20, 650kiB/s]
22%|██▏       | 47.9M/217M [00:26<04:13, 667kiB/s]
22%|██▏       | 48.0M/217M [00:26<04:07, 683kiB/s]
22%|██▏       | 48.1M/217M [00:26<04:01, 700kiB/s]
22%|██▏       | 48.2M/217M [00:26<03:49, 737kiB/s]
22%|██▏       | 48.2M/217M [00:27<03:45, 750kiB/s]
22%|██▏       | 48.3M/217M [00:27<04:02, 697kiB/s]
22%|██▏       | 48.4M/217M [00:27<03:49, 737kiB/s]
22%|██▏       | 48.5M/217M [00:27<03:53, 722kiB/s]
22%|██▏       | 48.5M/217M [00:27<04:10, 674kiB/s]
22%|██▏       | 48.6M/217M [00:27<04:10, 674kiB/s]
22%|██▏       | 48.7M/217M [00:27<04:07, 681kiB/s]
22%|██▏       | 48.8M/217M [00:27<04:02, 694kiB/s]
22%|██▏       | 48.9M/217M [00:28<03:59, 702kiB/s]
23%|██▎       | 49.0M/217M [00:28<03:56, 711kiB/s]
23%|██▎       | 49.0M/217M [00:28<03:50, 730kiB/s]
23%|██▎       | 49.1M/217M [00:28<03:49, 733kiB/s]
23%|██▎       | 49.2M/217M [00:28<03:43, 752kiB/s]
23%|██▎       | 49.3M/217M [00:28<03:37, 774kiB/s]
23%|██▎       | 49.4M/217M [00:28<03:35, 779kiB/s]
23%|██▎       | 49.5M/217M [00:28<03:31, 795kiB/s]
23%|██▎       | 49.6M/217M [00:28<03:24, 820kiB/s]
23%|██▎       | 49.7M/217M [00:29<03:19, 841kiB/s]
23%|██▎       | 49.8M/217M [00:29<03:15, 856kiB/s]
23%|██▎       | 49.9M/217M [00:29<03:10, 881kiB/s]
23%|██▎       | 50.0M/217M [00:29<03:06, 899kiB/s]
23%|██▎       | 50.1M/217M [00:29<03:02, 915kiB/s]
23%|██▎       | 50.2M/217M [00:29<02:56, 949kiB/s]
23%|██▎       | 50.3M/217M [00:29<02:54, 956kiB/s]
23%|██▎       | 50.4M/217M [00:29<02:51, 972kiB/s]
23%|██▎       | 50.5M/217M [00:29<02:45, 1.01MiB/s]
23%|██▎       | 50.6M/217M [00:29<02:42, 1.02MiB/s]
23%|██▎       | 50.7M/217M [00:30<02:38, 1.05MiB/s]
23%|██▎       | 50.9M/217M [00:30<02:36, 1.06MiB/s]
23%|██▎       | 51.0M/217M [00:30<02:32, 1.09MiB/s]
24%|██▎       | 51.1M/217M [00:30<02:30, 1.10MiB/s]
24%|██▎       | 51.2M/217M [00:30<02:26, 1.14MiB/s]
24%|██▎       | 51.4M/217M [00:30<02:24, 1.15MiB/s]
24%|██▎       | 51.5M/217M [00:30<02:21, 1.17MiB/s]
24%|██▍       | 51.6M/217M [00:30<02:18, 1.20MiB/s]
24%|██▍       | 51.8M/217M [00:30<02:15, 1.22MiB/s]
24%|██▍       | 51.9M/217M [00:31<02:13, 1.24MiB/s]
24%|██▍       | 52.0M/217M [00:31<02:12, 1.25MiB/s]
24%|██▍       | 52.2M/217M [00:31<02:10, 1.27MiB/s]
24%|██▍       | 52.3M/217M [00:31<02:06, 1.30MiB/s]
24%|██▍       | 52.5M/217M [00:31<02:05, 1.31MiB/s]
24%|██▍       | 52.6M/217M [00:31<02:03, 1.34MiB/s]
24%|██▍       | 52.8M/217M [00:31<02:01, 1.36MiB/s]
24%|██▍       | 52.9M/217M [00:31<02:00, 1.37MiB/s]
24%|██▍       | 53.1M/217M [00:31<01:57, 1.40MiB/s]
24%|██▍       | 53.2M/217M [00:31<01:55, 1.42MiB/s]
25%|██▍       | 53.3M/217M [00:32<01:59, 1.38MiB/s]
25%|██▍       | 53.5M/217M [00:32<02:07, 1.28MiB/s]
25%|██▍       | 53.6M/217M [00:32<02:14, 1.22MiB/s]
25%|██▍       | 53.7M/217M [00:32<02:14, 1.22MiB/s]
25%|██▍       | 53.9M/217M [00:32<02:17, 1.19MiB/s]
25%|██▍       | 54.0M/217M [00:32<02:18, 1.18MiB/s]
25%|██▍       | 54.1M/217M [00:32<02:16, 1.19MiB/s]
25%|██▍       | 54.2M/217M [00:32<02:14, 1.22MiB/s]
25%|██▌       | 54.4M/217M [00:32<02:11, 1.24MiB/s]
25%|██▌       | 54.5M/217M [00:33<02:10, 1.25MiB/s]
25%|██▌       | 54.7M/217M [00:33<02:03, 1.31MiB/s]
25%|██▌       | 54.8M/217M [00:33<02:07, 1.28MiB/s]
25%|██▌       | 54.9M/217M [00:33<02:03, 1.31MiB/s]
25%|██▌       | 55.1M/217M [00:33<02:01, 1.33MiB/s]
25%|██▌       | 55.2M/217M [00:33<02:00, 1.34MiB/s]
25%|██▌       | 55.4M/217M [00:33<01:59, 1.36MiB/s]
26%|██▌       | 55.5M/217M [00:33<01:57, 1.38MiB/s]
26%|██▌       | 55.7M/217M [00:33<01:56, 1.39MiB/s]
26%|██▌       | 55.8M/217M [00:34<01:54, 1.41MiB/s]
26%|██▌       | 56.0M/217M [00:34<01:53, 1.42MiB/s]
26%|██▌       | 56.1M/217M [00:34<01:52, 1.43MiB/s]
26%|██▌       | 56.3M/217M [00:34<01:51, 1.44MiB/s]
26%|██▌       | 56.4M/217M [00:34<01:51, 1.44MiB/s]
26%|██▌       | 56.6M/217M [00:34<01:50, 1.45MiB/s]
26%|██▌       | 56.8M/217M [00:34<01:48, 1.47MiB/s]
26%|██▌       | 56.9M/217M [00:34<01:49, 1.47MiB/s]
26%|██▋       | 57.1M/217M [00:34<01:47, 1.49MiB/s]
26%|██▋       | 57.2M/217M [00:34<01:45, 1.51MiB/s]
26%|██▋       | 57.4M/217M [00:35<01:45, 1.51MiB/s]
26%|██▋       | 57.6M/217M [00:35<01:43, 1.55MiB/s]
27%|██▋       | 57.7M/217M [00:35<01:42, 1.55MiB/s]
27%|██▋       | 57.9M/217M [00:35<01:41, 1.57MiB/s]
27%|██▋       | 58.1M/217M [00:35<01:38, 1.61MiB/s]
27%|██▋       | 58.2M/217M [00:35<01:39, 1.60MiB/s]
27%|██▋       | 58.4M/217M [00:35<01:37, 1.64MiB/s]
27%|██▋       | 58.6M/217M [00:35<01:35, 1.66MiB/s]
27%|██▋       | 58.8M/217M [00:35<01:34, 1.68MiB/s]
27%|██▋       | 58.9M/217M [00:36<01:34, 1.67MiB/s]
27%|██▋       | 59.1M/217M [00:36<01:44, 1.51MiB/s]
27%|██▋       | 59.3M/217M [00:36<01:48, 1.46MiB/s]
27%|██▋       | 59.4M/217M [00:36<02:10, 1.21MiB/s]
27%|██▋       | 59.6M/217M [00:36<01:59, 1.32MiB/s]
27%|██▋       | 59.7M/217M [00:36<02:10, 1.21MiB/s]
28%|██▊       | 59.9M/217M [00:36<02:18, 1.14MiB/s]
28%|██▊       | 60.0M/217M [00:36<02:21, 1.11MiB/s]
28%|██▊       | 60.1M/217M [00:37<02:23, 1.10MiB/s]
28%|██▊       | 60.2M/217M [00:37<02:26, 1.08MiB/s]
28%|██▊       | 60.3M/217M [00:37<02:29, 1.05MiB/s]
28%|██▊       | 60.4M/217M [00:37<02:33, 1.02MiB/s]
28%|██▊       | 60.5M/217M [00:37<02:46, 942kiB/s]
28%|██▊       | 60.6M/217M [00:37<02:55, 894kiB/s]
28%|██▊       | 60.7M/217M [00:37<02:55, 893kiB/s]
28%|██▊       | 60.8M/217M [00:37<03:04, 849kiB/s]
28%|██▊       | 60.9M/217M [00:37<03:08, 831kiB/s]
28%|██▊       | 61.0M/217M [00:38<03:08, 831kiB/s]
28%|██▊       | 61.1M/217M [00:38<03:02, 855kiB/s]
28%|██▊       | 61.2M/217M [00:38<03:01, 861kiB/s]
28%|██▊       | 61.3M/217M [00:38<02:59, 870kiB/s]
28%|██▊       | 61.4M/217M [00:38<02:55, 890kiB/s]
28%|██▊       | 61.5M/217M [00:38<03:01, 858kiB/s]
28%|██▊       | 61.6M/217M [00:38<03:04, 843kiB/s]
28%|██▊       | 61.7M/217M [00:38<03:12, 810kiB/s]
28%|██▊       | 61.7M/217M [00:38<03:15, 794kiB/s]
28%|██▊       | 61.8M/217M [00:39<03:27, 749kiB/s]
28%|██▊       | 61.9M/217M [00:39<03:39, 709kiB/s]
29%|██▊       | 62.0M/217M [00:39<04:02, 641kiB/s]
29%|██▊       | 62.0M/217M [00:39<04:10, 620kiB/s]
29%|██▊       | 62.1M/217M [00:39<04:14, 610kiB/s]
29%|██▊       | 62.2M/217M [00:39<04:11, 616kiB/s]
29%|██▊       | 62.2M/217M [00:39<04:13, 612kiB/s]
29%|██▊       | 62.3M/217M [00:39<04:07, 626kiB/s]
29%|██▊       | 62.4M/217M [00:40<03:59, 646kiB/s]
29%|██▉       | 62.5M/217M [00:40<03:52, 667kiB/s]
29%|██▉       | 62.6M/217M [00:40<03:48, 678kiB/s]
29%|██▉       | 62.6M/217M [00:40<03:41, 698kiB/s]
29%|██▉       | 62.7M/217M [00:40<03:35, 717kiB/s]
29%|██▉       | 62.8M/217M [00:40<03:32, 727kiB/s]
29%|██▉       | 62.9M/217M [00:40<03:24, 756kiB/s]
29%|██▉       | 63.0M/217M [00:40<03:17, 781kiB/s]
29%|██▉       | 63.1M/217M [00:40<03:12, 799kiB/s]
29%|██▉       | 63.2M/217M [00:41<03:07, 823kiB/s]
29%|██▉       | 63.3M/217M [00:41<03:27, 741kiB/s]
29%|██▉       | 63.4M/217M [00:41<03:12, 798kiB/s]
29%|██▉       | 63.5M/217M [00:41<03:22, 759kiB/s]
29%|██▉       | 63.6M/217M [00:41<03:27, 740kiB/s]
29%|██▉       | 63.6M/217M [00:41<03:29, 734kiB/s]
29%|██▉       | 63.7M/217M [00:41<03:26, 743kiB/s]
29%|██▉       | 63.8M/217M [00:41<03:22, 758kiB/s]
29%|██▉       | 63.9M/217M [00:42<03:24, 751kiB/s]
29%|██▉       | 64.0M/217M [00:42<03:19, 769kiB/s]
29%|██▉       | 64.1M/217M [00:42<03:13, 791kiB/s]
30%|██▉       | 64.2M/217M [00:42<03:11, 798kiB/s]
30%|██▉       | 64.3M/217M [00:42<03:06, 821kiB/s]
30%|██▉       | 64.4M/217M [00:42<03:03, 832kiB/s]
30%|██▉       | 64.5M/217M [00:42<03:01, 841kiB/s]
30%|██▉       | 64.6M/217M [00:42<02:59, 851kiB/s]
30%|██▉       | 64.7M/217M [00:42<02:54, 875kiB/s]
30%|██▉       | 64.8M/217M [00:43<02:51, 890kiB/s]
30%|██▉       | 64.9M/217M [00:43<02:49, 901kiB/s]
30%|██▉       | 65.0M/217M [00:43<02:44, 923kiB/s]
30%|██▉       | 65.1M/217M [00:43<02:42, 934kiB/s]
30%|██▉       | 65.2M/217M [00:43<02:36, 971kiB/s]
30%|███       | 65.3M/217M [00:43<02:34, 985kiB/s]
30%|███       | 65.4M/217M [00:43<02:30, 1.01MiB/s]
30%|███       | 65.5M/217M [00:43<02:26, 1.03MiB/s]
30%|███       | 65.6M/217M [00:43<02:24, 1.05MiB/s]
30%|███       | 65.7M/217M [00:44<02:44, 919kiB/s]
30%|███       | 65.9M/217M [00:44<02:25, 1.04MiB/s]
30%|███       | 66.0M/217M [00:44<02:30, 1.00MiB/s]
30%|███       | 66.1M/217M [00:44<02:34, 977kiB/s]
30%|███       | 66.2M/217M [00:44<02:44, 919kiB/s]
31%|███       | 66.3M/217M [00:44<02:43, 926kiB/s]
31%|███       | 66.4M/217M [00:44<02:42, 929kiB/s]
31%|███       | 66.5M/217M [00:44<02:59, 839kiB/s]
31%|███       | 66.6M/217M [00:44<02:47, 901kiB/s]
31%|███       | 66.7M/217M [00:45<02:50, 883kiB/s]
31%|███       | 66.8M/217M [00:45<03:05, 810kiB/s]
31%|███       | 66.9M/217M [00:45<03:09, 793kiB/s]
31%|███       | 67.0M/217M [00:45<03:12, 782kiB/s]
31%|███       | 67.1M/217M [00:45<03:05, 809kiB/s]
31%|███       | 67.1M/217M [00:45<03:07, 800kiB/s]
31%|███       | 67.2M/217M [00:45<03:20, 747kiB/s]
31%|███       | 67.3M/217M [00:45<03:24, 732kiB/s]
31%|███       | 67.4M/217M [00:45<03:25, 728kiB/s]
31%|███       | 67.4M/217M [00:46<03:43, 671kiB/s]
31%|███       | 67.5M/217M [00:46<03:44, 667kiB/s]
31%|███       | 67.6M/217M [00:46<03:41, 676kiB/s]
31%|███       | 67.7M/217M [00:46<03:38, 685kiB/s]
31%|███       | 67.8M/217M [00:46<03:34, 696kiB/s]
31%|███       | 67.8M/217M [00:46<03:38, 685kiB/s]
31%|███▏      | 67.9M/217M [00:46<03:48, 653kiB/s]
31%|███▏      | 68.0M/217M [00:46<03:57, 630kiB/s]
31%|███▏      | 68.0M/217M [00:47<04:05, 608kiB/s]
31%|███▏      | 68.1M/217M [00:47<04:03, 612kiB/s]
31%|███▏      | 68.2M/217M [00:47<04:05, 608kiB/s]
31%|███▏      | 68.2M/217M [00:47<04:07, 603kiB/s]
31%|███▏      | 68.3M/217M [00:47<04:01, 617kiB/s]
31%|███▏      | 68.4M/217M [00:47<03:53, 636kiB/s]
32%|███▏      | 68.5M/217M [00:47<03:48, 652kiB/s]
32%|███▏      | 68.5M/217M [00:47<03:43, 667kiB/s]
32%|███▏      | 68.6M/217M [00:47<03:37, 685kiB/s]
32%|███▏      | 68.7M/217M [00:48<03:31, 702kiB/s]
32%|███▏      | 68.8M/217M [00:48<03:24, 725kiB/s]
32%|███▏      | 68.9M/217M [00:48<03:19, 743kiB/s]
32%|███▏      | 69.0M/217M [00:48<03:16, 757kiB/s]
32%|███▏      | 69.1M/217M [00:48<03:09, 784kiB/s]
32%|███▏      | 69.1M/217M [00:48<03:40, 672kiB/s]
32%|███▏      | 69.3M/217M [00:48<03:06, 792kiB/s]
32%|███▏      | 69.4M/217M [00:48<03:16, 754kiB/s]
32%|███▏      | 69.4M/217M [00:49<03:23, 728kiB/s]
32%|███▏      | 69.5M/217M [00:49<03:25, 720kiB/s]
32%|███▏      | 69.6M/217M [00:49<03:23, 724kiB/s]
32%|███▏      | 69.7M/217M [00:49<03:49, 643kiB/s]
32%|███▏      | 69.8M/217M [00:49<03:32, 693kiB/s]
32%|███▏      | 69.9M/217M [00:49<03:35, 683kiB/s]
32%|███▏      | 69.9M/217M [00:49<03:46, 652kiB/s]
32%|███▏      | 70.0M/217M [00:49<03:51, 637kiB/s]
32%|███▏      | 70.1M/217M [00:49<03:57, 619kiB/s]
32%|███▏      | 70.1M/217M [00:50<04:00, 612kiB/s]
32%|███▏      | 70.2M/217M [00:50<04:00, 611kiB/s]
32%|███▏      | 70.3M/217M [00:50<03:58, 617kiB/s]
32%|███▏      | 70.3M/217M [00:50<03:47, 646kiB/s]
32%|███▏      | 70.4M/217M [00:50<03:41, 663kiB/s]
32%|███▏      | 70.5M/217M [00:50<03:34, 685kiB/s]
32%|███▏      | 70.6M/217M [00:50<03:27, 708kiB/s]
33%|███▎      | 70.7M/217M [00:50<03:24, 718kiB/s]
33%|███▎      | 70.7M/217M [00:50<03:16, 744kiB/s]
33%|███▎      | 70.8M/217M [00:51<03:12, 759kiB/s]
33%|███▎      | 70.9M/217M [00:51<03:06, 786kiB/s]
33%|███▎      | 71.0M/217M [00:51<03:01, 804kiB/s]
33%|███▎      | 71.1M/217M [00:51<02:56, 826kiB/s]
33%|███▎      | 71.2M/217M [00:51<02:51, 852kiB/s]
33%|███▎      | 71.3M/217M [00:51<02:48, 866kiB/s]
33%|███▎      | 71.4M/217M [00:51<02:43, 891kiB/s]
33%|███▎      | 71.5M/217M [00:51<02:41, 905kiB/s]
33%|███▎      | 71.6M/217M [00:51<02:35, 934kiB/s]
33%|███▎      | 71.7M/217M [00:52<02:31, 960kiB/s]
33%|███▎      | 71.9M/217M [00:52<02:27, 983kiB/s]
33%|███▎      | 72.0M/217M [00:52<02:25, 997kiB/s]
33%|███▎      | 72.1M/217M [00:52<02:21, 1.03MiB/s]
33%|███▎      | 72.2M/217M [00:52<02:19, 1.04MiB/s]
33%|███▎      | 72.3M/217M [00:52<02:16, 1.06MiB/s]
33%|███▎      | 72.4M/217M [00:52<02:13, 1.08MiB/s]
33%|███▎      | 72.5M/217M [00:52<02:11, 1.10MiB/s]
33%|███▎      | 72.7M/217M [00:52<02:08, 1.12MiB/s]
34%|███▎      | 72.8M/217M [00:53<02:06, 1.15MiB/s]
34%|███▎      | 72.9M/217M [00:53<02:04, 1.16MiB/s]
34%|███▎      | 73.1M/217M [00:53<02:01, 1.19MiB/s]
34%|███▎      | 73.2M/217M [00:53<01:58, 1.22MiB/s]
34%|███▎      | 73.3M/217M [00:53<01:57, 1.23MiB/s]
34%|███▍      | 73.5M/217M [00:53<01:54, 1.26MiB/s]
34%|███▍      | 73.6M/217M [00:53<01:52, 1.27MiB/s]
34%|███▍      | 73.8M/217M [00:53<01:51, 1.29MiB/s]
34%|███▍      | 73.9M/217M [00:53<01:48, 1.32MiB/s]
34%|███▍      | 74.1M/217M [00:53<01:47, 1.33MiB/s]
34%|███▍      | 74.2M/217M [00:54<01:45, 1.36MiB/s]
34%|███▍      | 74.3M/217M [00:54<01:44, 1.37MiB/s]
34%|███▍      | 74.5M/217M [00:54<01:43, 1.38MiB/s]
34%|███▍      | 74.7M/217M [00:54<01:40, 1.42MiB/s]
34%|███▍      | 74.8M/217M [00:54<01:36, 1.47MiB/s]
35%|███▍      | 75.0M/217M [00:54<01:38, 1.44MiB/s]
35%|███▍      | 75.1M/217M [00:54<01:36, 1.47MiB/s]
35%|███▍      | 75.3M/217M [00:54<01:35, 1.48MiB/s]
35%|███▍      | 75.5M/217M [00:54<01:33, 1.51MiB/s]
35%|███▍      | 75.6M/217M [00:55<01:32, 1.54MiB/s]
35%|███▍      | 75.8M/217M [00:55<01:31, 1.55MiB/s]
35%|███▍      | 75.9M/217M [00:55<01:38, 1.44MiB/s]
35%|███▌      | 76.1M/217M [00:55<01:35, 1.48MiB/s]
35%|███▌      | 76.3M/217M [00:55<01:41, 1.39MiB/s]
35%|███▌      | 76.4M/217M [00:55<01:42, 1.37MiB/s]
35%|███▌      | 76.5M/217M [00:55<01:47, 1.31MiB/s]
35%|███▌      | 76.7M/217M [00:55<01:46, 1.32MiB/s]
35%|███▌      | 76.8M/217M [00:55<01:46, 1.32MiB/s]
35%|███▌      | 77.0M/217M [00:56<01:45, 1.33MiB/s]
35%|███▌      | 77.1M/217M [00:56<01:43, 1.35MiB/s]
36%|███▌      | 77.3M/217M [00:56<01:41, 1.39MiB/s]
36%|███▌      | 77.4M/217M [00:56<01:39, 1.40MiB/s]
36%|███▌      | 77.6M/217M [00:56<01:37, 1.44MiB/s]
36%|███▌      | 77.7M/217M [00:56<01:36, 1.45MiB/s]
36%|███▌      | 77.9M/217M [00:56<01:36, 1.44MiB/s]
36%|███▌      | 78.0M/217M [00:56<01:43, 1.35MiB/s]
36%|███▌      | 78.2M/217M [00:56<01:51, 1.24MiB/s]
36%|███▌      | 78.3M/217M [00:57<01:51, 1.24MiB/s]
36%|███▌      | 78.4M/217M [00:57<01:55, 1.20MiB/s]
36%|███▌      | 78.5M/217M [00:57<01:58, 1.17MiB/s]
36%|███▌      | 78.7M/217M [00:57<02:09, 1.07MiB/s]
36%|███▋      | 78.8M/217M [00:57<02:03, 1.12MiB/s]
36%|███▋      | 78.9M/217M [00:57<02:13, 1.03MiB/s]
36%|███▋      | 79.0M/217M [00:57<02:16, 1.01MiB/s]
36%|███▋      | 79.1M/217M [00:57<02:20, 987kiB/s]
36%|███▋      | 79.2M/217M [00:57<02:20, 985kiB/s]
37%|███▋      | 79.3M/217M [00:58<02:28, 927kiB/s]
37%|███▋      | 79.4M/217M [00:58<02:27, 933kiB/s]
37%|███▋      | 79.5M/217M [00:58<02:26, 942kiB/s]
37%|███▋      | 79.6M/217M [00:58<02:24, 954kiB/s]
37%|███▋      | 79.7M/217M [00:58<02:23, 961kiB/s]
37%|███▋      | 79.8M/217M [00:58<02:18, 990kiB/s]
37%|███▋      | 80.0M/217M [00:58<02:16, 1.01MiB/s]
37%|███▋      | 80.1M/217M [00:58<02:14, 1.02MiB/s]
37%|███▋      | 80.2M/217M [00:58<02:10, 1.05MiB/s]
37%|███▋      | 80.3M/217M [00:59<02:08, 1.07MiB/s]
37%|███▋      | 80.4M/217M [00:59<02:10, 1.05MiB/s]
37%|███▋      | 80.5M/217M [00:59<02:20, 977kiB/s]
37%|███▋      | 80.6M/217M [00:59<02:26, 935kiB/s]
37%|███▋      | 80.7M/217M [00:59<02:27, 923kiB/s]
37%|███▋      | 80.8M/217M [00:59<02:29, 911kiB/s]
37%|███▋      | 80.9M/217M [00:59<02:28, 921kiB/s]
37%|███▋      | 81.0M/217M [00:59<02:26, 929kiB/s]
37%|███▋      | 81.1M/217M [00:59<02:24, 940kiB/s]
37%|███▋      | 81.2M/217M [01:00<02:20, 968kiB/s]
37%|███▋      | 81.3M/217M [01:00<02:38, 858kiB/s]
37%|███▋      | 81.5M/217M [01:00<02:25, 933kiB/s]
38%|███▊      | 81.6M/217M [01:00<02:28, 916kiB/s]
38%|███▊      | 81.6M/217M [01:00<02:39, 850kiB/s]
38%|███▊      | 81.7M/217M [01:00<02:42, 835kiB/s]
38%|███▊      | 81.8M/217M [01:00<02:52, 787kiB/s]
38%|███▊      | 81.9M/217M [01:00<02:51, 788kiB/s]
38%|███▊      | 82.0M/217M [01:01<02:51, 790kiB/s]
38%|███▊      | 82.1M/217M [01:01<02:48, 804kiB/s]
38%|███▊      | 82.2M/217M [01:01<02:44, 823kiB/s]
38%|███▊      | 82.3M/217M [01:01<02:40, 842kiB/s]
38%|███▊      | 82.4M/217M [01:01<02:37, 855kiB/s]
38%|███▊      | 82.5M/217M [01:01<02:34, 875kiB/s]
38%|███▊      | 82.6M/217M [01:01<02:30, 892kiB/s]
38%|███▊      | 82.7M/217M [01:01<02:28, 907kiB/s]
38%|███▊      | 82.8M/217M [01:01<02:24, 934kiB/s]
38%|███▊      | 82.9M/217M [01:02<02:20, 959kiB/s]
38%|███▊      | 83.0M/217M [01:02<02:19, 963kiB/s]
38%|███▊      | 83.1M/217M [01:02<02:25, 922kiB/s]
38%|███▊      | 83.2M/217M [01:02<02:36, 857kiB/s]
38%|███▊      | 83.3M/217M [01:02<02:43, 822kiB/s]
38%|███▊      | 83.4M/217M [01:02<02:42, 823kiB/s]
38%|███▊      | 83.5M/217M [01:02<02:39, 837kiB/s]
38%|███▊      | 83.6M/217M [01:02<02:38, 846kiB/s]
39%|███▊      | 83.7M/217M [01:02<02:35, 861kiB/s]
39%|███▊      | 83.8M/217M [01:03<02:31, 881kiB/s]
39%|███▊      | 83.9M/217M [01:03<02:29, 892kiB/s]
39%|███▊      | 84.0M/217M [01:03<02:26, 911kiB/s]
39%|███▊      | 84.1M/217M [01:03<02:24, 921kiB/s]
39%|███▊      | 84.2M/217M [01:03<02:18, 961kiB/s]
39%|███▉      | 84.3M/217M [01:03<02:19, 952kiB/s]
39%|███▉      | 84.4M/217M [01:03<02:17, 966kiB/s]
39%|███▉      | 84.5M/217M [01:03<02:14, 989kiB/s]
39%|███▉      | 84.6M/217M [01:03<02:12, 1.00MiB/s]
39%|███▉      | 84.8M/217M [01:04<02:11, 1.01MiB/s]
39%|███▉      | 84.9M/217M [01:04<02:10, 1.02MiB/s]
39%|███▉      | 85.0M/217M [01:04<02:05, 1.05MiB/s]
39%|███▉      | 85.1M/217M [01:04<02:05, 1.05MiB/s]
39%|███▉      | 85.2M/217M [01:04<02:02, 1.08MiB/s]
39%|███▉      | 85.3M/217M [01:04<02:00, 1.09MiB/s]
39%|███▉      | 85.5M/217M [01:04<01:57, 1.12MiB/s]
39%|███▉      | 85.6M/217M [01:04<01:55, 1.14MiB/s]
39%|███▉      | 85.7M/217M [01:04<01:52, 1.17MiB/s]
40%|███▉      | 85.9M/217M [01:04<01:51, 1.18MiB/s]
40%|███▉      | 86.0M/217M [01:05<01:49, 1.20MiB/s]
40%|███▉      | 86.1M/217M [01:05<01:47, 1.23MiB/s]
40%|███▉      | 86.2M/217M [01:05<01:45, 1.24MiB/s]
40%|███▉      | 86.4M/217M [01:05<01:44, 1.25MiB/s]
40%|███▉      | 86.5M/217M [01:05<01:42, 1.28MiB/s]
40%|███▉      | 86.7M/217M [01:05<01:40, 1.31MiB/s]
40%|███▉      | 86.8M/217M [01:05<01:38, 1.32MiB/s]
40%|████      | 87.0M/217M [01:05<01:36, 1.35MiB/s]
40%|████      | 87.1M/217M [01:05<01:35, 1.36MiB/s]
40%|████      | 87.3M/217M [01:06<01:33, 1.39MiB/s]
40%|████      | 87.4M/217M [01:06<01:31, 1.41MiB/s]
40%|████      | 87.6M/217M [01:06<01:30, 1.43MiB/s]
40%|████      | 87.7M/217M [01:06<01:29, 1.45MiB/s]
40%|████      | 87.9M/217M [01:06<01:27, 1.48MiB/s]
41%|████      | 88.0M/217M [01:06<01:38, 1.31MiB/s]
41%|████      | 88.2M/217M [01:06<01:29, 1.44MiB/s]
41%|████      | 88.4M/217M [01:06<01:36, 1.33MiB/s]
41%|████      | 88.5M/217M [01:06<01:39, 1.30MiB/s]
41%|████      | 88.6M/217M [01:07<01:41, 1.26MiB/s]
41%|████      | 88.8M/217M [01:07<01:49, 1.17MiB/s]
41%|████      | 88.9M/217M [01:07<01:54, 1.12MiB/s]
41%|████      | 89.0M/217M [01:07<02:02, 1.05MiB/s]
41%|████      | 89.1M/217M [01:07<02:10, 986kiB/s]
41%|████      | 89.2M/217M [01:07<02:26, 876kiB/s]
41%|████      | 89.3M/217M [01:07<02:38, 806kiB/s]
41%|████      | 89.4M/217M [01:07<02:43, 781kiB/s]
41%|████      | 89.5M/217M [01:08<02:49, 755kiB/s]
41%|████      | 89.6M/217M [01:08<02:51, 747kiB/s]
41%|████▏     | 89.6M/217M [01:08<02:47, 761kiB/s]
41%|████▏     | 89.7M/217M [01:08<02:49, 752kiB/s]
41%|████▏     | 89.8M/217M [01:08<02:45, 769kiB/s]
41%|████▏     | 89.9M/217M [01:08<02:41, 786kiB/s]
41%|████▏     | 90.0M/217M [01:08<02:38, 801kiB/s]
41%|████▏     | 90.1M/217M [01:08<02:33, 826kiB/s]
42%|████▏     | 90.2M/217M [01:08<02:29, 847kiB/s]
42%|████▏     | 90.3M/217M [01:09<02:28, 853kiB/s]
42%|████▏     | 90.4M/217M [01:09<02:23, 884kiB/s]
42%|████▏     | 90.5M/217M [01:09<02:21, 896kiB/s]
42%|████▏     | 90.6M/217M [01:09<02:17, 919kiB/s]
42%|████▏     | 90.7M/217M [01:09<02:14, 940kiB/s]
42%|████▏     | 90.8M/217M [01:09<02:10, 968kiB/s]
42%|████▏     | 90.9M/217M [01:09<02:08, 984kiB/s]
42%|████▏     | 91.1M/217M [01:09<02:06, 1.00MiB/s]
42%|████▏     | 91.2M/217M [01:09<02:02, 1.03MiB/s]
42%|████▏     | 91.3M/217M [01:10<02:00, 1.05MiB/s]
42%|████▏     | 91.4M/217M [01:10<01:57, 1.07MiB/s]
42%|████▏     | 91.5M/217M [01:10<01:55, 1.08MiB/s]
42%|████▏     | 91.7M/217M [01:10<01:53, 1.11MiB/s]
42%|████▏     | 91.8M/217M [01:10<01:50, 1.13MiB/s]
42%|████▏     | 91.9M/217M [01:10<01:49, 1.15MiB/s]
42%|████▏     | 92.0M/217M [01:10<01:46, 1.17MiB/s]
42%|████▏     | 92.2M/217M [01:10<01:45, 1.19MiB/s]
42%|████▏     | 92.3M/217M [01:10<01:42, 1.22MiB/s]
43%|████▎     | 92.4M/217M [01:11<01:40, 1.24MiB/s]
43%|████▎     | 92.6M/217M [01:11<01:39, 1.26MiB/s]
43%|████▎     | 92.7M/217M [01:11<01:38, 1.27MiB/s]
43%|████▎     | 92.8M/217M [01:11<01:44, 1.19MiB/s]
43%|████▎     | 92.9M/217M [01:11<01:54, 1.08MiB/s]
43%|████▎     | 93.1M/217M [01:11<01:56, 1.06MiB/s]
43%|████▎     | 93.2M/217M [01:11<01:57, 1.05MiB/s]
43%|████▎     | 93.3M/217M [01:11<01:55, 1.08MiB/s]
43%|████▎     | 93.4M/217M [01:11<01:54, 1.08MiB/s]
43%|████▎     | 93.5M/217M [01:12<01:52, 1.10MiB/s]
43%|████▎     | 93.7M/217M [01:12<01:49, 1.13MiB/s]
43%|████▎     | 93.8M/217M [01:12<01:47, 1.15MiB/s]
43%|████▎     | 93.9M/217M [01:12<01:46, 1.16MiB/s]
43%|████▎     | 94.1M/217M [01:12<01:43, 1.19MiB/s]
43%|████▎     | 94.2M/217M [01:12<01:43, 1.19MiB/s]
43%|████▎     | 94.3M/217M [01:12<01:40, 1.22MiB/s]
43%|████▎     | 94.5M/217M [01:12<01:39, 1.23MiB/s]
44%|████▎     | 94.6M/217M [01:12<01:38, 1.25MiB/s]
44%|████▎     | 94.7M/217M [01:12<01:37, 1.25MiB/s]
44%|████▎     | 94.9M/217M [01:13<01:36, 1.27MiB/s]
44%|████▎     | 95.0M/217M [01:13<01:34, 1.29MiB/s]
44%|████▍     | 95.1M/217M [01:13<01:34, 1.29MiB/s]
44%|████▍     | 95.3M/217M [01:13<01:33, 1.30MiB/s]
44%|████▍     | 95.4M/217M [01:13<01:31, 1.33MiB/s]
44%|████▍     | 95.6M/217M [01:13<01:31, 1.33MiB/s]
44%|████▍     | 95.7M/217M [01:13<01:30, 1.34MiB/s]
44%|████▍     | 95.9M/217M [01:13<01:28, 1.37MiB/s]
44%|████▍     | 96.0M/217M [01:13<01:28, 1.38MiB/s]
44%|████▍     | 96.2M/217M [01:14<01:27, 1.39MiB/s]
44%|████▍     | 96.3M/217M [01:14<01:24, 1.42MiB/s]
44%|████▍     | 96.5M/217M [01:14<01:23, 1.44MiB/s]
44%|████▍     | 96.6M/217M [01:14<01:23, 1.45MiB/s]
45%|████▍     | 96.8M/217M [01:14<01:25, 1.41MiB/s]
45%|████▍     | 96.9M/217M [01:14<01:26, 1.39MiB/s]
45%|████▍     | 97.1M/217M [01:14<01:34, 1.27MiB/s]
45%|████▍     | 97.2M/217M [01:14<01:36, 1.24MiB/s]
45%|████▍     | 97.3M/217M [01:14<01:36, 1.24MiB/s]
45%|████▍     | 97.4M/217M [01:15<01:36, 1.24MiB/s]
45%|████▍     | 97.6M/217M [01:15<01:38, 1.22MiB/s]
45%|████▍     | 97.7M/217M [01:15<01:35, 1.25MiB/s]
45%|████▌     | 97.9M/217M [01:15<01:34, 1.27MiB/s]
45%|████▌     | 98.0M/217M [01:15<01:31, 1.30MiB/s]
45%|████▌     | 98.2M/217M [01:15<01:30, 1.31MiB/s]
45%|████▌     | 98.3M/217M [01:15<01:29, 1.34MiB/s]
45%|████▌     | 98.5M/217M [01:15<01:27, 1.36MiB/s]
45%|████▌     | 98.6M/217M [01:15<01:26, 1.37MiB/s]
45%|████▌     | 98.7M/217M [01:15<01:24, 1.40MiB/s]
46%|████▌     | 98.9M/217M [01:16<01:24, 1.41MiB/s]
46%|████▌     | 99.0M/217M [01:16<01:22, 1.43MiB/s]
46%|████▌     | 99.2M/217M [01:16<01:21, 1.45MiB/s]
46%|████▌     | 99.4M/217M [01:16<01:21, 1.45MiB/s]
46%|████▌     | 99.5M/217M [01:16<01:20, 1.47MiB/s]
46%|████▌     | 99.7M/217M [01:16<01:19, 1.48MiB/s]
46%|████▌     | 99.8M/217M [01:16<01:18, 1.49MiB/s]
46%|████▌     | 100M/217M [01:16<01:18, 1.50MiB/s]
46%|████▌     | 100M/217M [01:16<01:17, 1.50MiB/s]
46%|████▌     | 100M/217M [01:17<01:17, 1.51MiB/s]
46%|████▋     | 100M/217M [01:17<01:16, 1.52MiB/s]
46%|████▋     | 101M/217M [01:17<01:16, 1.53MiB/s]
46%|████▋     | 101M/217M [01:17<01:14, 1.55MiB/s]
46%|████▋     | 101M/217M [01:17<01:14, 1.55MiB/s]
47%|████▋     | 101M/217M [01:17<01:12, 1.59MiB/s]
47%|████▋     | 101M/217M [01:17<01:12, 1.60MiB/s]
47%|████▋     | 101M/217M [01:17<01:11, 1.61MiB/s]
47%|████▋     | 102M/217M [01:17<01:10, 1.65MiB/s]
47%|████▋     | 102M/217M [01:17<01:09, 1.66MiB/s]
47%|████▋     | 102M/217M [01:18<01:10, 1.64MiB/s]
47%|████▋     | 102M/217M [01:18<01:15, 1.52MiB/s]
47%|████▋     | 102M/217M [01:18<01:18, 1.47MiB/s]
47%|████▋     | 102M/217M [01:18<01:20, 1.42MiB/s]
47%|████▋     | 103M/217M [01:18<01:22, 1.38MiB/s]
47%|████▋     | 103M/217M [01:18<01:24, 1.35MiB/s]
47%|████▋     | 103M/217M [01:18<01:22, 1.38MiB/s]
47%|████▋     | 103M/217M [01:18<01:21, 1.40MiB/s]
48%|████▊     | 103M/217M [01:18<01:20, 1.42MiB/s]
48%|████▊     | 103M/217M [01:19<01:17, 1.46MiB/s]
48%|████▊     | 104M/217M [01:19<01:16, 1.48MiB/s]
48%|████▊     | 104M/217M [01:19<01:16, 1.48MiB/s]
48%|████▊     | 104M/217M [01:19<01:23, 1.35MiB/s]
48%|████▊     | 104M/217M [01:19<01:26, 1.31MiB/s]
48%|████▊     | 104M/217M [01:19<01:29, 1.27MiB/s]
48%|████▊     | 104M/217M [01:19<01:31, 1.23MiB/s]
48%|████▊     | 104M/217M [01:19<01:33, 1.21MiB/s]
48%|████▊     | 105M/217M [01:19<01:32, 1.22MiB/s]
48%|████▊     | 105M/217M [01:20<01:32, 1.22MiB/s]
48%|████▊     | 105M/217M [01:20<01:31, 1.23MiB/s]
48%|████▊     | 105M/217M [01:20<01:30, 1.24MiB/s]
48%|████▊     | 105M/217M [01:20<01:30, 1.24MiB/s]
48%|████▊     | 105M/217M [01:20<01:28, 1.26MiB/s]
48%|████▊     | 105M/217M [01:20<01:27, 1.28MiB/s]
49%|████▊     | 105M/217M [01:20<01:26, 1.29MiB/s]
49%|████▊     | 106M/217M [01:20<01:24, 1.32MiB/s]
49%|████▊     | 106M/217M [01:20<01:24, 1.33MiB/s]
49%|████▊     | 106M/217M [01:21<01:22, 1.35MiB/s]
49%|████▉     | 106M/217M [01:21<01:20, 1.38MiB/s]
49%|████▉     | 106M/217M [01:21<01:20, 1.38MiB/s]
49%|████▉     | 106M/217M [01:21<01:18, 1.41MiB/s]
49%|████▉     | 107M/217M [01:21<01:17, 1.44MiB/s]
49%|████▉     | 107M/217M [01:21<01:16, 1.44MiB/s]
49%|████▉     | 107M/217M [01:21<01:14, 1.47MiB/s]
49%|████▉     | 107M/217M [01:21<01:14, 1.49MiB/s]
49%|████▉     | 107M/217M [01:21<01:12, 1.51MiB/s]
49%|████▉     | 107M/217M [01:22<01:23, 1.32MiB/s]
50%|████▉     | 108M/217M [01:22<01:13, 1.50MiB/s]
50%|████▉     | 108M/217M [01:22<01:17, 1.41MiB/s]
50%|████▉     | 108M/217M [01:22<01:21, 1.35MiB/s]
50%|████▉     | 108M/217M [01:22<01:21, 1.34MiB/s]
50%|████▉     | 108M/217M [01:22<01:29, 1.22MiB/s]
50%|████▉     | 108M/217M [01:22<01:35, 1.15MiB/s]
50%|████▉     | 108M/217M [01:22<01:39, 1.09MiB/s]
50%|████▉     | 109M/217M [01:23<01:48, 1.00MiB/s]
50%|████▉     | 109M/217M [01:23<02:00, 905kiB/s]
50%|█████     | 109M/217M [01:23<02:10, 831kiB/s]
50%|█████     | 109M/217M [01:23<02:13, 810kiB/s]
50%|█████     | 109M/217M [01:23<02:15, 799kiB/s]
50%|█████     | 109M/217M [01:23<02:19, 777kiB/s]
50%|█████     | 109M/217M [01:23<02:19, 779kiB/s]
50%|█████     | 109M/217M [01:23<02:20, 769kiB/s]
50%|█████     | 109M/217M [01:24<02:20, 768kiB/s]
50%|█████     | 109M/217M [01:24<02:15, 800kiB/s]
50%|█████     | 109M/217M [01:24<02:11, 821kiB/s]
50%|█████     | 109M/217M [01:24<02:09, 831kiB/s]
50%|█████     | 110M/217M [01:24<02:04, 866kiB/s]
50%|█████     | 110M/217M [01:24<02:02, 879kiB/s]
51%|█████     | 110M/217M [01:24<01:59, 896kiB/s]
51%|█████     | 110M/217M [01:24<01:56, 924kiB/s]
51%|█████     | 110M/217M [01:24<01:54, 936kiB/s]
51%|█████     | 110M/217M [01:25<01:50, 966kiB/s]
51%|█████     | 110M/217M [01:25<01:48, 989kiB/s]
51%|█████     | 110M/217M [01:25<01:46, 1.00MiB/s]
51%|█████     | 110M/217M [01:25<01:43, 1.03MiB/s]
51%|█████     | 111M/217M [01:25<01:41, 1.05MiB/s]
51%|█████     | 111M/217M [01:25<01:40, 1.06MiB/s]
51%|█████     | 111M/217M [01:25<01:37, 1.09MiB/s]
51%|█████     | 111M/217M [01:25<01:35, 1.11MiB/s]
51%|█████     | 111M/217M [01:25<01:34, 1.13MiB/s]
51%|█████     | 111M/217M [01:25<01:31, 1.15MiB/s]
51%|█████     | 111M/217M [01:26<01:29, 1.18MiB/s]
51%|█████▏    | 111M/217M [01:26<01:28, 1.20MiB/s]
51%|█████▏    | 112M/217M [01:26<01:27, 1.21MiB/s]
51%|█████▏    | 112M/217M [01:26<01:25, 1.24MiB/s]
51%|█████▏    | 112M/217M [01:26<01:23, 1.26MiB/s]
52%|█████▏    | 112M/217M [01:26<01:22, 1.27MiB/s]
52%|█████▏    | 112M/217M [01:26<01:20, 1.30MiB/s]
52%|█████▏    | 112M/217M [01:26<01:19, 1.32MiB/s]
52%|█████▏    | 112M/217M [01:26<01:18, 1.34MiB/s]
52%|█████▏    | 113M/217M [01:27<01:16, 1.36MiB/s]
52%|█████▏    | 113M/217M [01:27<01:15, 1.38MiB/s]
52%|█████▏    | 113M/217M [01:27<01:14, 1.40MiB/s]
52%|█████▏    | 113M/217M [01:27<01:13, 1.42MiB/s]
52%|█████▏    | 113M/217M [01:27<01:12, 1.44MiB/s]
52%|█████▏    | 113M/217M [01:27<01:13, 1.41MiB/s]
52%|█████▏    | 114M/217M [01:27<01:18, 1.32MiB/s]
52%|█████▏    | 114M/217M [01:27<01:21, 1.27MiB/s]
52%|█████▏    | 114M/217M [01:27<01:24, 1.22MiB/s]
52%|█████▏    | 114M/217M [01:28<01:27, 1.18MiB/s]
52%|█████▏    | 114M/217M [01:28<01:25, 1.20MiB/s]
53%|█████▎    | 114M/217M [01:28<01:24, 1.22MiB/s]
53%|█████▎    | 114M/217M [01:28<01:23, 1.23MiB/s]
53%|█████▎    | 114M/217M [01:28<01:21, 1.26MiB/s]
53%|█████▎    | 115M/217M [01:28<01:21, 1.26MiB/s]
53%|█████▎    | 115M/217M [01:28<01:26, 1.19MiB/s]
53%|█████▎    | 115M/217M [01:28<01:31, 1.12MiB/s]
53%|█████▎    | 115M/217M [01:28<01:34, 1.08MiB/s]
53%|█████▎    | 115M/217M [01:29<01:44, 980kiB/s]
53%|█████▎    | 115M/217M [01:29<01:44, 974kiB/s]
53%|█████▎    | 115M/217M [01:29<01:55, 887kiB/s]
53%|█████▎    | 115M/217M [01:29<02:03, 829kiB/s]
53%|█████▎    | 115M/217M [01:29<02:03, 827kiB/s]
53%|█████▎    | 115M/217M [01:29<02:05, 810kiB/s]
53%|█████▎    | 116M/217M [01:29<02:09, 785kiB/s]
53%|█████▎    | 116M/217M [01:29<02:17, 738kiB/s]
53%|█████▎    | 116M/217M [01:30<02:18, 733kiB/s]
53%|█████▎    | 116M/217M [01:30<02:18, 734kiB/s]
53%|█████▎    | 116M/217M [01:30<02:32, 667kiB/s]
53%|█████▎    | 116M/217M [01:30<02:31, 670kiB/s]
53%|█████▎    | 116M/217M [01:30<02:30, 671kiB/s]
53%|█████▎    | 116M/217M [01:30<02:29, 675kiB/s]
53%|█████▎    | 116M/217M [01:30<02:33, 658kiB/s]
53%|█████▎    | 116M/217M [01:30<02:30, 672kiB/s]
54%|█████▎    | 116M/217M [01:30<02:27, 684kiB/s]
54%|█████▎    | 116M/217M [01:31<02:22, 709kiB/s]
54%|█████▎    | 116M/217M [01:31<02:18, 729kiB/s]
54%|█████▎    | 117M/217M [01:31<02:16, 738kiB/s]
54%|█████▎    | 117M/217M [01:31<02:13, 755kiB/s]
54%|█████▎    | 117M/217M [01:31<02:07, 786kiB/s]
54%|█████▍    | 117M/217M [01:31<02:04, 806kiB/s]
54%|█████▍    | 117M/217M [01:31<02:01, 823kiB/s]
54%|█████▍    | 117M/217M [01:31<02:00, 835kiB/s]
54%|█████▍    | 117M/217M [01:31<01:54, 871kiB/s]
54%|█████▍    | 117M/217M [01:31<01:52, 892kiB/s]
54%|█████▍    | 117M/217M [01:32<01:51, 897kiB/s]
54%|█████▍    | 117M/217M [01:32<01:47, 929kiB/s]
54%|█████▍    | 118M/217M [01:32<01:44, 954kiB/s]
54%|█████▍    | 118M/217M [01:32<01:42, 974kiB/s]
54%|█████▍    | 118M/217M [01:32<01:40, 993kiB/s]
54%|█████▍    | 118M/217M [01:32<01:38, 1.01MiB/s]
54%|█████▍    | 118M/217M [01:32<01:35, 1.04MiB/s]
54%|█████▍    | 118M/217M [01:32<01:34, 1.05MiB/s]
54%|█████▍    | 118M/217M [01:32<01:33, 1.06MiB/s]
54%|█████▍    | 118M/217M [01:33<01:29, 1.10MiB/s]
55%|█████▍    | 119M/217M [01:33<01:28, 1.11MiB/s]
55%|█████▍    | 119M/217M [01:33<01:26, 1.14MiB/s]
55%|█████▍    | 119M/217M [01:33<01:38, 1.01MiB/s]
55%|█████▍    | 119M/217M [01:33<01:29, 1.10MiB/s]
55%|█████▍    | 119M/217M [01:33<01:34, 1.04MiB/s]
55%|█████▍    | 119M/217M [01:33<01:51, 884kiB/s]
55%|█████▍    | 119M/217M [01:33<01:54, 857kiB/s]
55%|█████▍    | 119M/217M [01:34<02:03, 792kiB/s]
55%|█████▍    | 119M/217M [01:34<02:07, 767kiB/s]
55%|█████▍    | 119M/217M [01:34<02:08, 762kiB/s]
55%|█████▌    | 120M/217M [01:34<02:13, 735kiB/s]
55%|█████▌    | 120M/217M [01:34<02:23, 683kiB/s]
55%|█████▌    | 120M/217M [01:34<02:26, 666kiB/s]
55%|█████▌    | 120M/217M [01:34<02:33, 635kiB/s]
55%|█████▌    | 120M/217M [01:34<02:34, 632kiB/s]
55%|█████▌    | 120M/217M [01:35<02:39, 612kiB/s]
55%|█████▌    | 120M/217M [01:35<02:41, 601kiB/s]
55%|█████▌    | 120M/217M [01:35<02:42, 597kiB/s]
55%|█████▌    | 120M/217M [01:35<02:37, 615kiB/s]
55%|█████▌    | 120M/217M [01:35<02:29, 650kiB/s]
55%|█████▌    | 120M/217M [01:35<02:26, 660kiB/s]
55%|█████▌    | 120M/217M [01:35<02:22, 680kiB/s]
55%|█████▌    | 120M/217M [01:35<02:17, 705kiB/s]
55%|█████▌    | 121M/217M [01:35<02:14, 722kiB/s]
55%|█████▌    | 121M/217M [01:36<02:10, 742kiB/s]
56%|█████▌    | 121M/217M [01:36<02:05, 769kiB/s]
56%|█████▌    | 121M/217M [01:36<02:01, 796kiB/s]
56%|█████▌    | 121M/217M [01:36<01:58, 816kiB/s]
56%|█████▌    | 121M/217M [01:36<01:54, 839kiB/s]
56%|█████▌    | 121M/217M [01:36<01:51, 862kiB/s]
56%|█████▌    | 121M/217M [01:36<01:49, 878kiB/s]
56%|█████▌    | 121M/217M [01:36<01:47, 891kiB/s]
56%|█████▌    | 121M/217M [01:36<01:42, 932kiB/s]
56%|█████▌    | 121M/217M [01:37<01:42, 932kiB/s]
56%|█████▌    | 122M/217M [01:37<01:38, 968kiB/s]
56%|█████▌    | 122M/217M [01:37<01:36, 986kiB/s]
56%|█████▌    | 122M/217M [01:37<01:34, 1.01MiB/s]
56%|█████▌    | 122M/217M [01:37<01:33, 1.02MiB/s]
56%|█████▌    | 122M/217M [01:37<01:30, 1.05MiB/s]
56%|█████▌    | 122M/217M [01:37<01:28, 1.07MiB/s]
56%|█████▋    | 122M/217M [01:37<01:27, 1.08MiB/s]
56%|█████▋    | 122M/217M [01:37<01:25, 1.11MiB/s]
56%|█████▋    | 123M/217M [01:37<01:23, 1.13MiB/s]
56%|█████▋    | 123M/217M [01:38<01:22, 1.15MiB/s]
57%|█████▋    | 123M/217M [01:38<01:20, 1.17MiB/s]
57%|█████▋    | 123M/217M [01:38<01:18, 1.20MiB/s]
57%|█████▋    | 123M/217M [01:38<01:24, 1.12MiB/s]
57%|█████▋    | 123M/217M [01:38<01:21, 1.15MiB/s]
57%|█████▋    | 123M/217M [01:38<01:32, 1.01MiB/s]
57%|█████▋    | 123M/217M [01:38<01:43, 911kiB/s]
57%|█████▋    | 124M/217M [01:38<01:52, 837kiB/s]
57%|█████▋    | 124M/217M [01:39<01:55, 810kiB/s]
57%|█████▋    | 124M/217M [01:39<01:56, 802kiB/s]
57%|█████▋    | 124M/217M [01:39<01:59, 780kiB/s]
57%|█████▋    | 124M/217M [01:39<02:03, 758kiB/s]
57%|█████▋    | 124M/217M [01:39<02:02, 760kiB/s]
57%|█████▋    | 124M/217M [01:39<02:02, 763kiB/s]
57%|█████▋    | 124M/217M [01:39<01:59, 781kiB/s]
57%|█████▋    | 124M/217M [01:39<01:56, 798kiB/s]
57%|█████▋    | 124M/217M [01:40<02:10, 714kiB/s]
57%|█████▋    | 124M/217M [01:40<01:58, 782kiB/s]
57%|█████▋    | 124M/217M [01:40<01:58, 784kiB/s]
57%|█████▋    | 125M/217M [01:40<02:03, 752kiB/s]
57%|█████▋    | 125M/217M [01:40<02:11, 706kiB/s]
57%|█████▋    | 125M/217M [01:40<02:22, 652kiB/s]
57%|█████▋    | 125M/217M [01:40<02:32, 607kiB/s]
57%|█████▋    | 125M/217M [01:40<02:40, 576kiB/s]
57%|█████▋    | 125M/217M [01:41<03:08, 490kiB/s]
58%|█████▊    | 125M/217M [01:41<03:02, 505kiB/s]
58%|█████▊    | 125M/217M [01:41<03:09, 488kiB/s]
58%|█████▊    | 125M/217M [01:41<03:18, 464kiB/s]
58%|█████▊    | 125M/217M [01:41<03:24, 451kiB/s]
58%|█████▊    | 125M/217M [01:41<03:32, 433kiB/s]
58%|█████▊    | 125M/217M [01:41<03:25, 448kiB/s]
58%|█████▊    | 125M/217M [01:41<03:20, 459kiB/s]
58%|█████▊    | 125M/217M [01:41<03:16, 467kiB/s]
58%|█████▊    | 125M/217M [01:42<03:09, 486kiB/s]
58%|█████▊    | 125M/217M [01:42<03:02, 503kiB/s]
58%|█████▊    | 125M/217M [01:42<02:56, 520kiB/s]
58%|█████▊    | 126M/217M [01:42<02:51, 534kiB/s]
58%|█████▊    | 126M/217M [01:42<02:44, 559kiB/s]
58%|█████▊    | 126M/217M [01:42<02:38, 579kiB/s]
58%|█████▊    | 126M/217M [01:42<02:32, 599kiB/s]
58%|█████▊    | 126M/217M [01:42<02:29, 614kiB/s]
58%|█████▊    | 126M/217M [01:42<02:24, 634kiB/s]
58%|█████▊    | 126M/217M [01:43<02:17, 664kiB/s]
58%|█████▊    | 126M/217M [01:43<02:13, 683kiB/s]
58%|█████▊    | 126M/217M [01:43<02:09, 701kiB/s]
58%|█████▊    | 126M/217M [01:43<02:06, 720kiB/s]
58%|█████▊    | 126M/217M [01:43<02:21, 643kiB/s]
58%|█████▊    | 126M/217M [01:43<02:08, 710kiB/s]
58%|█████▊    | 126M/217M [01:43<02:12, 686kiB/s]
58%|█████▊    | 127M/217M [01:43<02:13, 680kiB/s]
58%|█████▊    | 127M/217M [01:43<02:13, 677kiB/s]
58%|█████▊    | 127M/217M [01:44<02:20, 646kiB/s]
58%|█████▊    | 127M/217M [01:44<02:20, 644kiB/s]
58%|█████▊    | 127M/217M [01:44<02:33, 588kiB/s]
58%|█████▊    | 127M/217M [01:44<02:33, 590kiB/s]
58%|█████▊    | 127M/217M [01:44<02:40, 562kiB/s]
58%|█████▊    | 127M/217M [01:44<02:47, 538kiB/s]
58%|█████▊    | 127M/217M [01:44<02:46, 543kiB/s]
59%|█████▊    | 127M/217M [01:44<02:39, 566kiB/s]
59%|█████▊    | 127M/217M [01:45<02:38, 568kiB/s]
59%|█████▊    | 127M/217M [01:45<02:34, 582kiB/s]
59%|█████▊    | 127M/217M [01:45<02:29, 601kiB/s]
59%|█████▊    | 127M/217M [01:45<02:24, 624kiB/s]
59%|█████▊    | 127M/217M [01:45<02:19, 643kiB/s]
59%|█████▊    | 128M/217M [01:45<02:14, 665kiB/s]
59%|█████▊    | 128M/217M [01:45<02:10, 686kiB/s]
59%|█████▉    | 128M/217M [01:45<02:06, 708kiB/s]
59%|█████▉    | 128M/217M [01:45<02:04, 721kiB/s]
59%|█████▉    | 128M/217M [01:46<02:00, 745kiB/s]
59%|█████▉    | 128M/217M [01:46<01:57, 763kiB/s]
59%|█████▉    | 128M/217M [01:46<01:54, 777kiB/s]
59%|█████▉    | 128M/217M [01:46<01:50, 805kiB/s]
59%|█████▉    | 128M/217M [01:46<01:47, 827kiB/s]
59%|█████▉    | 128M/217M [01:46<01:45, 846kiB/s]
59%|█████▉    | 128M/217M [01:46<01:41, 872kiB/s]
59%|█████▉    | 129M/217M [01:46<01:40, 885kiB/s]
59%|█████▉    | 129M/217M [01:46<01:37, 912kiB/s]
59%|█████▉    | 129M/217M [01:46<01:35, 931kiB/s]
59%|█████▉    | 129M/217M [01:47<01:30, 976kiB/s]
59%|█████▉    | 129M/217M [01:47<01:31, 961kiB/s]
59%|█████▉    | 129M/217M [01:47<01:29, 988kiB/s]
59%|█████▉    | 129M/217M [01:47<01:27, 1.01MiB/s]
60%|█████▉    | 129M/217M [01:47<01:25, 1.03MiB/s]
60%|█████▉    | 129M/217M [01:47<01:36, 909kiB/s]
60%|█████▉    | 130M/217M [01:47<01:26, 1.02MiB/s]
60%|█████▉    | 130M/217M [01:47<01:30, 966kiB/s]
60%|█████▉    | 130M/217M [01:47<01:34, 925kiB/s]
60%|█████▉    | 130M/217M [01:48<01:36, 904kiB/s]
60%|█████▉    | 130M/217M [01:48<01:37, 895kiB/s]
60%|█████▉    | 130M/217M [01:48<01:36, 907kiB/s]
60%|█████▉    | 130M/217M [01:48<01:35, 917kiB/s]
60%|█████▉    | 130M/217M [01:48<01:33, 934kiB/s]
60%|█████▉    | 130M/217M [01:48<01:30, 956kiB/s]
60%|██████    | 130M/217M [01:48<01:29, 971kiB/s]
60%|██████    | 131M/217M [01:48<01:27, 991kiB/s]
60%|██████    | 131M/217M [01:48<01:26, 1.00MiB/s]
60%|██████    | 131M/217M [01:49<01:25, 1.02MiB/s]
60%|██████    | 131M/217M [01:49<01:23, 1.04MiB/s]
60%|██████    | 131M/217M [01:49<01:22, 1.04MiB/s]
60%|██████    | 131M/217M [01:49<01:22, 1.05MiB/s]
60%|██████    | 131M/217M [01:49<01:20, 1.07MiB/s]
60%|██████    | 131M/217M [01:49<01:19, 1.08MiB/s]
61%|██████    | 132M/217M [01:49<01:18, 1.10MiB/s]
61%|██████    | 132M/217M [01:49<01:16, 1.12MiB/s]
61%|██████    | 132M/217M [01:49<01:16, 1.12MiB/s]
61%|██████    | 132M/217M [01:50<01:21, 1.05MiB/s]
61%|██████    | 132M/217M [01:50<01:28, 967kiB/s]
61%|██████    | 132M/217M [01:50<01:29, 951kiB/s]
61%|██████    | 132M/217M [01:50<01:30, 941kiB/s]
61%|██████    | 132M/217M [01:50<01:34, 902kiB/s]
61%|██████    | 132M/217M [01:50<01:36, 883kiB/s]
61%|██████    | 132M/217M [01:50<01:46, 800kiB/s]
61%|██████    | 133M/217M [01:50<01:48, 778kiB/s]
61%|██████    | 133M/217M [01:51<01:51, 758kiB/s]
61%|██████    | 133M/217M [01:51<01:51, 760kiB/s]
61%|██████    | 133M/217M [01:51<01:51, 761kiB/s]
61%|██████    | 133M/217M [01:51<01:50, 765kiB/s]
61%|██████    | 133M/217M [01:51<01:48, 779kiB/s]
61%|██████    | 133M/217M [01:51<01:47, 781kiB/s]
61%|██████▏   | 133M/217M [01:51<01:43, 811kiB/s]
61%|██████▏   | 133M/217M [01:51<01:41, 832kiB/s]
61%|██████▏   | 133M/217M [01:51<01:39, 846kiB/s]
61%|██████▏   | 133M/217M [01:51<01:37, 862kiB/s]
61%|██████▏   | 134M/217M [01:52<01:34, 886kiB/s]
61%|██████▏   | 134M/217M [01:52<01:32, 901kiB/s]
62%|██████▏   | 134M/217M [01:52<01:30, 921kiB/s]
62%|██████▏   | 134M/217M [01:52<01:28, 939kiB/s]
62%|██████▏   | 134M/217M [01:52<01:26, 967kiB/s]
62%|██████▏   | 134M/217M [01:52<01:24, 985kiB/s]
62%|██████▏   | 134M/217M [01:52<01:22, 1.01MiB/s]
62%|██████▏   | 134M/217M [01:52<01:20, 1.03MiB/s]
62%|██████▏   | 134M/217M [01:52<01:18, 1.05MiB/s]
62%|██████▏   | 134M/217M [01:53<01:17, 1.07MiB/s]
62%|██████▏   | 135M/217M [01:53<01:16, 1.08MiB/s]
62%|██████▏   | 135M/217M [01:53<01:14, 1.10MiB/s]
62%|██████▏   | 135M/217M [01:53<01:12, 1.13MiB/s]
62%|██████▏   | 135M/217M [01:53<01:11, 1.15MiB/s]
62%|██████▏   | 135M/217M [01:53<01:10, 1.17MiB/s]
62%|██████▏   | 135M/217M [01:53<01:08, 1.20MiB/s]
62%|██████▏   | 135M/217M [01:53<01:07, 1.21MiB/s]
62%|██████▏   | 136M/217M [01:53<01:06, 1.23MiB/s]
62%|██████▏   | 136M/217M [01:53<01:05, 1.25MiB/s]
62%|██████▏   | 136M/217M [01:54<01:04, 1.27MiB/s]
63%|██████▎   | 136M/217M [01:54<01:02, 1.30MiB/s]
63%|██████▎   | 136M/217M [01:54<01:01, 1.32MiB/s]
63%|██████▎   | 136M/217M [01:54<01:01, 1.33MiB/s]
63%|██████▎   | 136M/217M [01:54<00:59, 1.37MiB/s]
63%|██████▎   | 137M/217M [01:54<00:58, 1.37MiB/s]
63%|██████▎   | 137M/217M [01:54<00:57, 1.39MiB/s]
63%|██████▎   | 137M/217M [01:54<00:58, 1.38MiB/s]
63%|██████▎   | 137M/217M [01:54<01:02, 1.28MiB/s]
63%|██████▎   | 137M/217M [01:55<01:06, 1.21MiB/s]
63%|██████▎   | 137M/217M [01:55<01:06, 1.21MiB/s]
63%|██████▎   | 137M/217M [01:55<01:07, 1.18MiB/s]
63%|██████▎   | 137M/217M [01:55<01:08, 1.16MiB/s]
63%|██████▎   | 138M/217M [01:55<01:07, 1.18MiB/s]
63%|██████▎   | 138M/217M [01:55<01:06, 1.20MiB/s]
63%|██████▎   | 138M/217M [01:55<01:04, 1.22MiB/s]
64%|██████▎   | 138M/217M [01:55<01:03, 1.24MiB/s]
64%|██████▎   | 138M/217M [01:55<01:02, 1.26MiB/s]
64%|██████▎   | 138M/217M [01:56<01:01, 1.29MiB/s]
64%|██████▎   | 138M/217M [01:56<01:09, 1.13MiB/s]
64%|██████▍   | 139M/217M [01:56<01:09, 1.13MiB/s]
64%|██████▍   | 139M/217M [01:56<01:09, 1.12MiB/s]
64%|██████▍   | 139M/217M [01:56<01:20, 976kiB/s]
64%|██████▍   | 139M/217M [01:56<01:26, 907kiB/s]
64%|██████▍   | 139M/217M [01:56<01:31, 852kiB/s]
64%|██████▍   | 139M/217M [01:57<01:34, 828kiB/s]
64%|██████▍   | 139M/217M [01:57<01:35, 817kiB/s]
64%|██████▍   | 139M/217M [01:57<01:35, 813kiB/s]
64%|██████▍   | 139M/217M [01:57<01:36, 811kiB/s]
64%|██████▍   | 139M/217M [01:57<01:37, 797kiB/s]
64%|██████▍   | 140M/217M [01:57<01:48, 714kiB/s]
64%|██████▍   | 140M/217M [01:57<01:38, 789kiB/s]
64%|██████▍   | 140M/217M [01:57<01:39, 780kiB/s]
64%|██████▍   | 140M/217M [01:57<01:44, 744kiB/s]
64%|██████▍   | 140M/217M [01:58<01:47, 718kiB/s]
64%|██████▍   | 140M/217M [01:58<01:50, 701kiB/s]
64%|██████▍   | 140M/217M [01:58<01:47, 717kiB/s]
64%|██████▍   | 140M/217M [01:58<01:46, 728kiB/s]
65%|██████▍   | 140M/217M [01:58<01:43, 748kiB/s]
65%|██████▍   | 140M/217M [01:58<01:41, 756kiB/s]
65%|██████▍   | 140M/217M [01:58<01:47, 718kiB/s]
65%|██████▍   | 140M/217M [01:58<01:48, 707kiB/s]
65%|██████▍   | 141M/217M [01:58<01:56, 657kiB/s]
65%|██████▍   | 141M/217M [01:59<02:08, 595kiB/s]
65%|██████▍   | 141M/217M [01:59<02:22, 539kiB/s]
65%|██████▍   | 141M/217M [01:59<02:25, 528kiB/s]
65%|██████▍   | 141M/217M [01:59<02:26, 523kiB/s]
65%|██████▍   | 141M/217M [01:59<02:37, 484kiB/s]
65%|██████▍   | 141M/217M [01:59<02:38, 482kiB/s]
65%|██████▍   | 141M/217M [01:59<02:32, 502kiB/s]
65%|██████▍   | 141M/217M [01:59<02:27, 516kiB/s]
65%|██████▍   | 141M/217M [02:00<02:22, 533kiB/s]
65%|██████▍   | 141M/217M [02:00<02:17, 553kiB/s]
65%|██████▍   | 141M/217M [02:00<02:12, 575kiB/s]
65%|██████▌   | 141M/217M [02:00<02:09, 586kiB/s]
65%|██████▌   | 141M/217M [02:00<02:03, 615kiB/s]
65%|██████▌   | 141M/217M [02:00<01:58, 642kiB/s]
65%|██████▌   | 142M/217M [02:00<01:54, 659kiB/s]
65%|██████▌   | 142M/217M [02:00<01:51, 681kiB/s]
65%|██████▌   | 142M/217M [02:00<01:47, 702kiB/s]
65%|██████▌   | 142M/217M [02:01<01:44, 720kiB/s]
65%|██████▌   | 142M/217M [02:01<01:41, 745kiB/s]
65%|██████▌   | 142M/217M [02:01<01:38, 765kiB/s]
65%|██████▌   | 142M/217M [02:01<01:34, 792kiB/s]
65%|██████▌   | 142M/217M [02:01<01:33, 807kiB/s]
65%|██████▌   | 142M/217M [02:01<01:29, 838kiB/s]
66%|██████▌   | 142M/217M [02:01<01:28, 848kiB/s]
66%|██████▌   | 142M/217M [02:01<01:26, 870kiB/s]
66%|██████▌   | 143M/217M [02:01<01:23, 899kiB/s]
66%|██████▌   | 143M/217M [02:02<01:22, 906kiB/s]
66%|██████▌   | 143M/217M [02:02<01:19, 932kiB/s]
66%|██████▌   | 143M/217M [02:02<01:17, 958kiB/s]
66%|██████▌   | 143M/217M [02:02<01:15, 981kiB/s]
66%|██████▌   | 143M/217M [02:02<01:14, 995kiB/s]
66%|██████▌   | 143M/217M [02:02<01:12, 1.03MiB/s]
66%|██████▌   | 143M/217M [02:02<01:10, 1.05MiB/s]
66%|██████▌   | 143M/217M [02:02<01:09, 1.07MiB/s]
66%|██████▌   | 144M/217M [02:02<01:08, 1.08MiB/s]
66%|██████▌   | 144M/217M [02:03<01:06, 1.10MiB/s]
66%|██████▌   | 144M/217M [02:03<01:05, 1.13MiB/s]
66%|██████▌   | 144M/217M [02:03<01:04, 1.14MiB/s]
66%|██████▋   | 144M/217M [02:03<01:03, 1.16MiB/s]
66%|██████▋   | 144M/217M [02:03<01:01, 1.19MiB/s]
66%|██████▋   | 144M/217M [02:03<01:00, 1.21MiB/s]
66%|██████▋   | 144M/217M [02:03<00:59, 1.22MiB/s]
67%|██████▋   | 145M/217M [02:03<00:58, 1.24MiB/s]
67%|██████▋   | 145M/217M [02:03<00:57, 1.26MiB/s]
67%|██████▋   | 145M/217M [02:03<00:56, 1.29MiB/s]
67%|██████▋   | 145M/217M [02:04<00:55, 1.30MiB/s]
67%|██████▋   | 145M/217M [02:04<00:54, 1.33MiB/s]
67%|██████▋   | 145M/217M [02:04<00:52, 1.36MiB/s]
67%|██████▋   | 145M/217M [02:04<00:52, 1.37MiB/s]
67%|██████▋   | 146M/217M [02:04<00:51, 1.40MiB/s]
67%|██████▋   | 146M/217M [02:04<00:50, 1.41MiB/s]
67%|██████▋   | 146M/217M [02:04<00:49, 1.44MiB/s]
67%|██████▋   | 146M/217M [02:04<00:48, 1.46MiB/s]
67%|██████▋   | 146M/217M [02:04<00:48, 1.47MiB/s]
67%|██████▋   | 146M/217M [02:05<00:47, 1.50MiB/s]
67%|██████▋   | 147M/217M [02:05<00:46, 1.52MiB/s]
68%|██████▊   | 147M/217M [02:05<00:45, 1.54MiB/s]
68%|██████▊   | 147M/217M [02:05<00:45, 1.56MiB/s]
68%|██████▊   | 147M/217M [02:05<00:44, 1.57MiB/s]
68%|██████▊   | 147M/217M [02:05<00:43, 1.60MiB/s]
68%|██████▊   | 147M/217M [02:05<00:43, 1.62MiB/s]
68%|██████▊   | 148M/217M [02:05<00:42, 1.64MiB/s]
68%|██████▊   | 148M/217M [02:05<00:43, 1.61MiB/s]
68%|██████▊   | 148M/217M [02:06<00:45, 1.51MiB/s]
68%|██████▊   | 148M/217M [02:06<00:49, 1.40MiB/s]
68%|██████▊   | 148M/217M [02:06<00:49, 1.40MiB/s]
68%|██████▊   | 148M/217M [02:06<00:50, 1.36MiB/s]
68%|██████▊   | 148M/217M [02:06<00:50, 1.36MiB/s]
68%|██████▊   | 149M/217M [02:06<00:50, 1.35MiB/s]
68%|██████▊   | 149M/217M [02:06<00:49, 1.39MiB/s]
69%|██████▊   | 149M/217M [02:06<00:48, 1.41MiB/s]
69%|██████▊   | 149M/217M [02:06<00:47, 1.43MiB/s]
69%|██████▊   | 149M/217M [02:06<00:46, 1.47MiB/s]
69%|██████▉   | 149M/217M [02:07<00:45, 1.49MiB/s]
69%|██████▉   | 150M/217M [02:07<00:44, 1.51MiB/s]
69%|██████▉   | 150M/217M [02:07<00:43, 1.54MiB/s]
69%|██████▉   | 150M/217M [02:07<00:43, 1.54MiB/s]
69%|██████▉   | 150M/217M [02:07<00:42, 1.56MiB/s]
69%|██████▉   | 150M/217M [02:07<00:41, 1.60MiB/s]
69%|██████▉   | 150M/217M [02:07<00:41, 1.60MiB/s]
69%|██████▉   | 151M/217M [02:07<00:41, 1.62MiB/s]
69%|██████▉   | 151M/217M [02:07<00:40, 1.64MiB/s]
69%|██████▉   | 151M/217M [02:08<00:40, 1.64MiB/s]
70%|██████▉   | 151M/217M [02:08<00:40, 1.65MiB/s]
70%|██████▉   | 151M/217M [02:08<00:39, 1.67MiB/s]
70%|██████▉   | 152M/217M [02:08<00:39, 1.67MiB/s]
70%|██████▉   | 152M/217M [02:08<00:38, 1.69MiB/s]
70%|██████▉   | 152M/217M [02:08<00:38, 1.69MiB/s]
70%|██████▉   | 152M/217M [02:08<00:38, 1.70MiB/s]
70%|███████   | 152M/217M [02:08<00:38, 1.71MiB/s]
70%|███████   | 152M/217M [02:08<00:37, 1.71MiB/s]
70%|███████   | 153M/217M [02:08<00:37, 1.72MiB/s]
70%|███████   | 153M/217M [02:09<00:37, 1.73MiB/s]
70%|███████   | 153M/217M [02:09<00:35, 1.80MiB/s]
70%|███████   | 153M/217M [02:09<00:36, 1.74MiB/s]
71%|███████   | 153M/217M [02:09<00:35, 1.79MiB/s]
71%|███████   | 154M/217M [02:09<00:35, 1.80MiB/s]
71%|███████   | 154M/217M [02:09<00:35, 1.81MiB/s]
71%|███████   | 154M/217M [02:09<00:39, 1.62MiB/s]
71%|███████   | 154M/217M [02:09<00:35, 1.77MiB/s]
71%|███████   | 154M/217M [02:09<00:38, 1.65MiB/s]
71%|███████   | 154M/217M [02:10<00:39, 1.60MiB/s]
71%|███████   | 155M/217M [02:10<00:40, 1.56MiB/s]
71%|███████   | 155M/217M [02:10<00:40, 1.53MiB/s]
71%|███████▏  | 155M/217M [02:10<00:40, 1.53MiB/s]
71%|███████▏  | 155M/217M [02:10<00:40, 1.55MiB/s]
71%|███████▏  | 155M/217M [02:10<00:39, 1.56MiB/s]
72%|███████▏  | 155M/217M [02:10<00:38, 1.59MiB/s]
72%|███████▏  | 156M/217M [02:10<00:37, 1.63MiB/s]
72%|███████▏  | 156M/217M [02:10<00:37, 1.64MiB/s]
72%|███████▏  | 156M/217M [02:11<00:36, 1.66MiB/s]
72%|███████▏  | 156M/217M [02:11<00:38, 1.58MiB/s]
72%|███████▏  | 156M/217M [02:11<00:38, 1.59MiB/s]
72%|███████▏  | 157M/217M [02:11<00:40, 1.52MiB/s]
72%|███████▏  | 157M/217M [02:11<00:42, 1.41MiB/s]
72%|███████▏  | 157M/217M [02:11<00:43, 1.38MiB/s]
72%|███████▏  | 157M/217M [02:11<00:43, 1.38MiB/s]
72%|███████▏  | 157M/217M [02:11<00:44, 1.37MiB/s]
72%|███████▏  | 157M/217M [02:11<00:43, 1.37MiB/s]
72%|███████▏  | 157M/217M [02:12<00:43, 1.39MiB/s]
73%|███████▎  | 158M/217M [02:12<00:42, 1.39MiB/s]
73%|███████▎  | 158M/217M [02:12<00:42, 1.40MiB/s]
73%|███████▎  | 158M/217M [02:12<00:42, 1.41MiB/s]
73%|███████▎  | 158M/217M [02:12<00:41, 1.42MiB/s]
73%|███████▎  | 158M/217M [02:12<00:41, 1.44MiB/s]
73%|███████▎  | 158M/217M [02:12<00:40, 1.45MiB/s]
73%|███████▎  | 158M/217M [02:12<00:40, 1.46MiB/s]
73%|███████▎  | 159M/217M [02:12<00:39, 1.50MiB/s]
73%|███████▎  | 159M/217M [02:13<00:39, 1.50MiB/s]
73%|███████▎  | 159M/217M [02:13<00:38, 1.52MiB/s]
73%|███████▎  | 159M/217M [02:13<00:37, 1.55MiB/s]
73%|███████▎  | 159M/217M [02:13<00:36, 1.57MiB/s]
73%|███████▎  | 159M/217M [02:13<00:36, 1.58MiB/s]
73%|███████▎  | 160M/217M [02:13<00:35, 1.61MiB/s]
74%|███████▎  | 160M/217M [02:13<00:35, 1.63MiB/s]
74%|███████▎  | 160M/217M [02:13<00:34, 1.64MiB/s]
74%|███████▎  | 160M/217M [02:13<00:34, 1.67MiB/s]
74%|███████▍  | 160M/217M [02:13<00:33, 1.68MiB/s]
74%|███████▍  | 161M/217M [02:14<00:33, 1.71MiB/s]
74%|███████▍  | 161M/217M [02:14<00:32, 1.73MiB/s]
74%|███████▍  | 161M/217M [02:14<00:31, 1.79MiB/s]
74%|███████▍  | 161M/217M [02:14<00:31, 1.76MiB/s]
74%|███████▍  | 161M/217M [02:14<00:31, 1.78MiB/s]
74%|███████▍  | 162M/217M [02:14<00:30, 1.81MiB/s]
74%|███████▍  | 162M/217M [02:14<00:30, 1.82MiB/s]
75%|███████▍  | 162M/217M [02:14<00:29, 1.85MiB/s]
75%|███████▍  | 162M/217M [02:14<00:29, 1.87MiB/s]
75%|███████▍  | 162M/217M [02:15<00:28, 1.90MiB/s]
75%|███████▍  | 163M/217M [02:15<00:29, 1.88MiB/s]
75%|███████▍  | 163M/217M [02:15<00:32, 1.68MiB/s]
75%|███████▍  | 163M/217M [02:15<00:33, 1.63MiB/s]
75%|███████▌  | 163M/217M [02:15<00:34, 1.59MiB/s]
75%|███████▌  | 163M/217M [02:15<00:34, 1.59MiB/s]
75%|███████▌  | 163M/217M [02:15<00:34, 1.55MiB/s]
75%|███████▌  | 164M/217M [02:15<00:34, 1.55MiB/s]
75%|███████▌  | 164M/217M [02:15<00:33, 1.60MiB/s]
75%|███████▌  | 164M/217M [02:16<00:33, 1.61MiB/s]
75%|███████▌  | 164M/217M [02:16<00:32, 1.65MiB/s]
76%|███████▌  | 164M/217M [02:16<00:31, 1.68MiB/s]
76%|███████▌  | 164M/217M [02:16<00:31, 1.70MiB/s]
76%|███████▌  | 165M/217M [02:16<00:30, 1.73MiB/s]
76%|███████▌  | 165M/217M [02:16<00:29, 1.76MiB/s]
76%|███████▌  | 165M/217M [02:16<00:34, 1.52MiB/s]
76%|███████▌  | 165M/217M [02:16<00:30, 1.73MiB/s]
76%|███████▌  | 165M/217M [02:16<00:32, 1.61MiB/s]
76%|███████▌  | 166M/217M [02:17<00:33, 1.54MiB/s]
76%|███████▋  | 166M/217M [02:17<00:33, 1.54MiB/s]
76%|███████▋  | 166M/217M [02:17<00:34, 1.48MiB/s]
76%|███████▋  | 166M/217M [02:17<00:34, 1.48MiB/s]
76%|███████▋  | 166M/217M [02:17<00:34, 1.48MiB/s]
77%|███████▋  | 166M/217M [02:17<00:35, 1.45MiB/s]
77%|███████▋  | 167M/217M [02:17<00:34, 1.47MiB/s]
77%|███████▋  | 167M/217M [02:17<00:34, 1.47MiB/s]
77%|███████▋  | 167M/217M [02:17<00:33, 1.49MiB/s]
77%|███████▋  | 167M/217M [02:18<00:33, 1.50MiB/s]
77%|███████▋  | 167M/217M [02:18<00:33, 1.51MiB/s]
77%|███████▋  | 167M/217M [02:18<00:32, 1.54MiB/s]
77%|███████▋  | 167M/217M [02:18<00:33, 1.50MiB/s]
77%|███████▋  | 168M/217M [02:18<00:36, 1.37MiB/s]
77%|███████▋  | 168M/217M [02:18<00:38, 1.29MiB/s]
77%|███████▋  | 168M/217M [02:18<00:44, 1.11MiB/s]
77%|███████▋  | 168M/217M [02:18<00:42, 1.17MiB/s]
77%|███████▋  | 168M/217M [02:19<00:46, 1.05MiB/s]
77%|███████▋  | 168M/217M [02:19<00:52, 934kiB/s]
77%|███████▋  | 168M/217M [02:19<00:57, 851kiB/s]
78%|███████▊  | 168M/217M [02:19<00:59, 827kiB/s]
78%|███████▊  | 169M/217M [02:19<01:01, 788kiB/s]
78%|███████▊  | 169M/217M [02:19<01:03, 760kiB/s]
78%|███████▊  | 169M/217M [02:19<01:04, 748kiB/s]
78%|███████▊  | 169M/217M [02:19<01:05, 745kiB/s]
78%|███████▊  | 169M/217M [02:20<01:05, 742kiB/s]
78%|███████▊  | 169M/217M [02:20<01:03, 755kiB/s]
78%|███████▊  | 169M/217M [02:20<01:02, 770kiB/s]
78%|███████▊  | 169M/217M [02:20<01:00, 792kiB/s]
78%|███████▊  | 169M/217M [02:20<00:59, 808kiB/s]
78%|███████▊  | 169M/217M [02:20<00:57, 827kiB/s]
78%|███████▊  | 169M/217M [02:20<00:56, 851kiB/s]
78%|███████▊  | 170M/217M [02:20<00:55, 864kiB/s]
78%|███████▊  | 170M/217M [02:20<00:53, 889kiB/s]
78%|███████▊  | 170M/217M [02:21<01:01, 773kiB/s]
78%|███████▊  | 170M/217M [02:21<00:56, 845kiB/s]
78%|███████▊  | 170M/217M [02:21<00:57, 822kiB/s]
78%|███████▊  | 170M/217M [02:21<00:58, 802kiB/s]
78%|███████▊  | 170M/217M [02:21<00:59, 795kiB/s]
78%|███████▊  | 170M/217M [02:21<00:59, 795kiB/s]
78%|███████▊  | 170M/217M [02:21<00:59, 797kiB/s]
78%|███████▊  | 170M/217M [02:21<01:06, 710kiB/s]
78%|███████▊  | 170M/217M [02:21<01:03, 738kiB/s]
78%|███████▊  | 171M/217M [02:22<01:03, 736kiB/s]
79%|███████▊  | 171M/217M [02:22<01:08, 678kiB/s]
79%|███████▊  | 171M/217M [02:22<01:09, 673kiB/s]
79%|███████▊  | 171M/217M [02:22<01:11, 656kiB/s]
79%|███████▊  | 171M/217M [02:22<01:10, 659kiB/s]
79%|███████▊  | 171M/217M [02:22<01:08, 677kiB/s]
79%|███████▊  | 171M/217M [02:22<01:08, 679kiB/s]
79%|███████▊  | 171M/217M [02:22<01:14, 618kiB/s]
79%|███████▉  | 171M/217M [02:23<01:09, 668kiB/s]
79%|███████▉  | 171M/217M [02:23<01:11, 643kiB/s]
79%|███████▉  | 171M/217M [02:23<01:11, 642kiB/s]
79%|███████▉  | 171M/217M [02:23<01:13, 625kiB/s]
79%|███████▉  | 171M/217M [02:23<01:13, 625kiB/s]
79%|███████▉  | 171M/217M [02:23<01:12, 635kiB/s]
79%|███████▉  | 172M/217M [02:23<01:10, 653kiB/s]
79%|███████▉  | 172M/217M [02:23<01:08, 664kiB/s]
79%|███████▉  | 172M/217M [02:23<01:07, 673kiB/s]
79%|███████▉  | 172M/217M [02:24<01:06, 679kiB/s]
79%|███████▉  | 172M/217M [02:24<01:06, 684kiB/s]
79%|███████▉  | 172M/217M [02:24<01:03, 714kiB/s]
79%|███████▉  | 172M/217M [02:24<01:02, 725kiB/s]
79%|███████▉  | 172M/217M [02:24<01:01, 739kiB/s]
79%|███████▉  | 172M/217M [02:24<00:59, 755kiB/s]
79%|███████▉  | 172M/217M [02:24<00:57, 784kiB/s]
79%|███████▉  | 172M/217M [02:24<00:55, 808kiB/s]
79%|███████▉  | 173M/217M [02:24<00:54, 824kiB/s]
79%|███████▉  | 173M/217M [02:25<00:52, 847kiB/s]
79%|███████▉  | 173M/217M [02:25<00:58, 760kiB/s]
80%|███████▉  | 173M/217M [02:25<00:52, 844kiB/s]
80%|███████▉  | 173M/217M [02:25<00:55, 795kiB/s]
80%|███████▉  | 173M/217M [02:25<01:05, 679kiB/s]
80%|███████▉  | 173M/217M [02:25<01:08, 649kiB/s]
80%|███████▉  | 173M/217M [02:25<01:11, 618kiB/s]
80%|███████▉  | 173M/217M [02:26<01:13, 596kiB/s]
80%|███████▉  | 173M/217M [02:26<01:16, 579kiB/s]
80%|███████▉  | 173M/217M [02:26<01:18, 559kiB/s]
80%|███████▉  | 173M/217M [02:26<01:16, 576kiB/s]
80%|███████▉  | 173M/217M [02:26<01:14, 592kiB/s]
80%|███████▉  | 174M/217M [02:26<01:11, 616kiB/s]
80%|███████▉  | 174M/217M [02:26<01:09, 626kiB/s]
80%|███████▉  | 174M/217M [02:26<01:06, 659kiB/s]
80%|███████▉  | 174M/217M [02:26<01:04, 680kiB/s]
80%|████████  | 174M/217M [02:27<01:02, 694kiB/s]
80%|████████  | 174M/217M [02:27<01:01, 706kiB/s]
80%|████████  | 174M/217M [02:27<00:58, 735kiB/s]
80%|████████  | 174M/217M [02:27<00:57, 746kiB/s]
80%|████████  | 174M/217M [02:27<00:55, 772kiB/s]
80%|████████  | 174M/217M [02:27<00:53, 797kiB/s]
80%|████████  | 174M/217M [02:27<00:52, 820kiB/s]
80%|████████  | 174M/217M [02:27<00:50, 842kiB/s]
80%|████████  | 175M/217M [02:27<00:49, 867kiB/s]
80%|████████  | 175M/217M [02:27<00:48, 884kiB/s]
80%|████████  | 175M/217M [02:28<00:47, 900kiB/s]
80%|████████  | 175M/217M [02:28<00:45, 928kiB/s]
81%|████████  | 175M/217M [02:28<00:44, 950kiB/s]
81%|████████  | 175M/217M [02:28<00:43, 967kiB/s]
81%|████████  | 175M/217M [02:28<00:42, 992kiB/s]
81%|████████  | 175M/217M [02:28<00:41, 1.01MiB/s]
81%|████████  | 175M/217M [02:28<00:40, 1.04MiB/s]
81%|████████  | 176M/217M [02:28<00:39, 1.05MiB/s]
81%|████████  | 176M/217M [02:28<00:38, 1.07MiB/s]
81%|████████  | 176M/217M [02:29<00:37, 1.10MiB/s]
81%|████████  | 176M/217M [02:29<00:37, 1.11MiB/s]
81%|████████  | 176M/217M [02:29<00:36, 1.14MiB/s]
81%|████████  | 176M/217M [02:29<00:35, 1.17MiB/s]
81%|████████  | 176M/217M [02:29<00:34, 1.17MiB/s]
81%|████████  | 176M/217M [02:29<00:37, 1.09MiB/s]
81%|████████▏ | 177M/217M [02:29<00:36, 1.13MiB/s]
81%|████████▏ | 177M/217M [02:29<00:38, 1.06MiB/s]
81%|████████▏ | 177M/217M [02:29<00:38, 1.04MiB/s]
81%|████████▏ | 177M/217M [02:30<00:40, 995kiB/s]
81%|████████▏ | 177M/217M [02:30<00:39, 1.01MiB/s]
82%|████████▏ | 177M/217M [02:30<00:39, 1.02MiB/s]
82%|████████▏ | 177M/217M [02:30<00:38, 1.03MiB/s]
82%|████████▏ | 177M/217M [02:30<00:43, 917kiB/s]
82%|████████▏ | 178M/217M [02:30<00:40, 994kiB/s]
82%|████████▏ | 178M/217M [02:30<00:41, 950kiB/s]
82%|████████▏ | 178M/217M [02:30<00:50, 787kiB/s]
82%|████████▏ | 178M/217M [02:31<00:47, 826kiB/s]
82%|████████▏ | 178M/217M [02:31<00:50, 774kiB/s]
82%|████████▏ | 178M/217M [02:31<00:53, 730kiB/s]
82%|████████▏ | 178M/217M [02:31<00:54, 725kiB/s]
82%|████████▏ | 178M/217M [02:31<00:57, 676kiB/s]
82%|████████▏ | 178M/217M [02:31<01:03, 612kiB/s]
82%|████████▏ | 178M/217M [02:31<01:08, 567kiB/s]
82%|████████▏ | 178M/217M [02:31<01:08, 567kiB/s]
82%|████████▏ | 178M/217M [02:32<01:13, 532kiB/s]
82%|████████▏ | 178M/217M [02:32<01:15, 515kiB/s]
82%|████████▏ | 179M/217M [02:32<01:12, 533kiB/s]
82%|████████▏ | 179M/217M [02:32<01:10, 550kiB/s]
82%|████████▏ | 179M/217M [02:32<01:08, 564kiB/s]
82%|████████▏ | 179M/217M [02:32<01:06, 584kiB/s]
82%|████████▏ | 179M/217M [02:32<01:05, 590kiB/s]
82%|████████▏ | 179M/217M [02:32<01:03, 606kiB/s]
82%|████████▏ | 179M/217M [02:33<01:05, 584kiB/s]
82%|████████▏ | 179M/217M [02:33<01:11, 537kiB/s]
82%|████████▏ | 179M/217M [02:33<01:13, 518kiB/s]
82%|████████▏ | 179M/217M [02:33<01:12, 529kiB/s]
82%|████████▏ | 179M/217M [02:33<01:10, 540kiB/s]
82%|████████▏ | 179M/217M [02:33<01:08, 553kiB/s]
83%|████████▎ | 179M/217M [02:33<01:18, 485kiB/s]
83%|████████▎ | 179M/217M [02:33<01:08, 553kiB/s]
83%|████████▎ | 179M/217M [02:33<01:09, 547kiB/s]
83%|████████▎ | 179M/217M [02:34<01:24, 450kiB/s]
83%|████████▎ | 180M/217M [02:34<01:24, 446kiB/s]
83%|████████▎ | 180M/217M [02:34<01:31, 410kiB/s]
83%|████████▎ | 180M/217M [02:34<01:34, 398kiB/s]
83%|████████▎ | 180M/217M [02:34<01:35, 395kiB/s]
83%|████████▎ | 180M/217M [02:34<01:35, 392kiB/s]
83%|████████▎ | 180M/217M [02:34<01:33, 402kiB/s]
83%|████████▎ | 180M/217M [02:35<01:29, 420kiB/s]
83%|████████▎ | 180M/217M [02:35<01:26, 434kiB/s]
83%|████████▎ | 180M/217M [02:35<01:22, 453kiB/s]
83%|████████▎ | 180M/217M [02:35<01:20, 462kiB/s]
83%|████████▎ | 180M/217M [02:35<01:16, 489kiB/s]
83%|████████▎ | 180M/217M [02:35<01:12, 511kiB/s]
83%|████████▎ | 180M/217M [02:35<01:11, 521kiB/s]
83%|████████▎ | 180M/217M [02:35<01:08, 540kiB/s]
83%|████████▎ | 180M/217M [02:35<01:05, 565kiB/s]
83%|████████▎ | 180M/217M [02:36<01:03, 584kiB/s]
83%|████████▎ | 180M/217M [02:36<01:00, 610kiB/s]
83%|████████▎ | 181M/217M [02:36<00:58, 627kiB/s]
83%|████████▎ | 181M/217M [02:36<00:55, 663kiB/s]
83%|████████▎ | 181M/217M [02:36<00:54, 677kiB/s]
83%|████████▎ | 181M/217M [02:36<00:52, 696kiB/s]
83%|████████▎ | 181M/217M [02:36<00:51, 713kiB/s]
83%|████████▎ | 181M/217M [02:36<00:49, 733kiB/s]
83%|████████▎ | 181M/217M [02:37<00:55, 656kiB/s]
83%|████████▎ | 181M/217M [02:37<00:48, 743kiB/s]
83%|████████▎ | 181M/217M [02:37<00:49, 733kiB/s]
83%|████████▎ | 181M/217M [02:37<00:52, 684kiB/s]
83%|████████▎ | 181M/217M [02:37<00:53, 675kiB/s]
83%|████████▎ | 181M/217M [02:37<00:52, 678kiB/s]
84%|████████▎ | 182M/217M [02:37<00:51, 692kiB/s]
84%|████████▎ | 182M/217M [02:37<00:50, 707kiB/s]
84%|████████▎ | 182M/217M [02:37<00:49, 713kiB/s]
84%|████████▎ | 182M/217M [02:38<00:48, 728kiB/s]
84%|████████▎ | 182M/217M [02:38<00:47, 739kiB/s]
84%|████████▎ | 182M/217M [02:38<00:47, 751kiB/s]
84%|████████▍ | 182M/217M [02:38<00:45, 770kiB/s]
84%|████████▍ | 182M/217M [02:38<00:44, 784kiB/s]
84%|████████▍ | 182M/217M [02:38<00:44, 789kiB/s]
84%|████████▍ | 182M/217M [02:38<00:43, 811kiB/s]
84%|████████▍ | 182M/217M [02:38<00:41, 834kiB/s]
84%|████████▍ | 182M/217M [02:38<00:40, 856kiB/s]
84%|████████▍ | 183M/217M [02:38<00:39, 874kiB/s]
84%|████████▍ | 183M/217M [02:39<00:38, 890kiB/s]
84%|████████▍ | 183M/217M [02:39<00:37, 913kiB/s]
84%|████████▍ | 183M/217M [02:39<00:37, 930kiB/s]
84%|████████▍ | 183M/217M [02:39<00:36, 945kiB/s]
84%|████████▍ | 183M/217M [02:39<00:35, 970kiB/s]
84%|████████▍ | 183M/217M [02:39<00:34, 995kiB/s]
84%|████████▍ | 183M/217M [02:39<00:33, 1.02MiB/s]
84%|████████▍ | 183M/217M [02:39<00:32, 1.03MiB/s]
84%|████████▍ | 184M/217M [02:39<00:31, 1.07MiB/s]
85%|████████▍ | 184M/217M [02:40<00:31, 1.08MiB/s]
85%|████████▍ | 184M/217M [02:40<00:30, 1.09MiB/s]
85%|████████▍ | 184M/217M [02:40<00:29, 1.12MiB/s]
85%|████████▍ | 184M/217M [02:40<00:29, 1.14MiB/s]
85%|████████▍ | 184M/217M [02:40<00:28, 1.16MiB/s]
85%|████████▍ | 184M/217M [02:40<00:27, 1.18MiB/s]
85%|████████▍ | 184M/217M [02:40<00:27, 1.20MiB/s]
85%|████████▍ | 185M/217M [02:40<00:26, 1.22MiB/s]
85%|████████▍ | 185M/217M [02:40<00:26, 1.24MiB/s]
85%|████████▌ | 185M/217M [02:40<00:25, 1.26MiB/s]
85%|████████▌ | 185M/217M [02:41<00:25, 1.29MiB/s]
85%|████████▌ | 185M/217M [02:41<00:24, 1.30MiB/s]
85%|████████▌ | 185M/217M [02:41<00:23, 1.34MiB/s]
85%|████████▌ | 185M/217M [02:41<00:23, 1.35MiB/s]
85%|████████▌ | 186M/217M [02:41<00:23, 1.36MiB/s]
85%|████████▌ | 186M/217M [02:41<00:22, 1.39MiB/s]
86%|████████▌ | 186M/217M [02:41<00:22, 1.40MiB/s]
86%|████████▌ | 186M/217M [02:41<00:22, 1.42MiB/s]
86%|████████▌ | 186M/217M [02:41<00:21, 1.45MiB/s]
86%|████████▌ | 186M/217M [02:42<00:21, 1.47MiB/s]
86%|████████▌ | 186M/217M [02:42<00:20, 1.50MiB/s]
86%|████████▌ | 187M/217M [02:42<00:22, 1.34MiB/s]
86%|████████▌ | 187M/217M [02:42<00:21, 1.45MiB/s]
86%|████████▌ | 187M/217M [02:42<00:22, 1.35MiB/s]
86%|████████▌ | 187M/217M [02:42<00:22, 1.32MiB/s]
86%|████████▌ | 187M/217M [02:42<00:23, 1.29MiB/s]
86%|████████▌ | 187M/217M [02:42<00:24, 1.25MiB/s]
86%|████████▋ | 188M/217M [02:42<00:23, 1.28MiB/s]
86%|████████▋ | 188M/217M [02:43<00:23, 1.28MiB/s]
86%|████████▋ | 188M/217M [02:43<00:22, 1.30MiB/s]
86%|████████▋ | 188M/217M [02:43<00:21, 1.34MiB/s]
87%|████████▋ | 188M/217M [02:43<00:21, 1.35MiB/s]
87%|████████▋ | 188M/217M [02:43<00:21, 1.37MiB/s]
87%|████████▋ | 188M/217M [02:43<00:23, 1.24MiB/s]
87%|████████▋ | 189M/217M [02:43<00:21, 1.32MiB/s]
87%|████████▋ | 189M/217M [02:43<00:22, 1.25MiB/s]
87%|████████▋ | 189M/217M [02:43<00:23, 1.24MiB/s]
87%|████████▋ | 189M/217M [02:44<00:24, 1.18MiB/s]
87%|████████▋ | 189M/217M [02:44<00:24, 1.16MiB/s]
87%|████████▋ | 189M/217M [02:44<00:25, 1.12MiB/s]
87%|████████▋ | 189M/217M [02:44<00:24, 1.15MiB/s]
87%|████████▋ | 189M/217M [02:44<00:24, 1.13MiB/s]
87%|████████▋ | 190M/217M [02:44<00:24, 1.14MiB/s]
87%|████████▋ | 190M/217M [02:44<00:23, 1.17MiB/s]
87%|████████▋ | 190M/217M [02:44<00:23, 1.17MiB/s]
87%|████████▋ | 190M/217M [02:44<00:22, 1.20MiB/s]
87%|████████▋ | 190M/217M [02:45<00:22, 1.22MiB/s]
88%|████████▊ | 190M/217M [02:45<00:22, 1.22MiB/s]
88%|████████▊ | 190M/217M [02:45<00:21, 1.26MiB/s]
88%|████████▊ | 190M/217M [02:45<00:21, 1.27MiB/s]
88%|████████▊ | 191M/217M [02:45<00:20, 1.29MiB/s]
88%|████████▊ | 191M/217M [02:45<00:23, 1.14MiB/s]
88%|████████▊ | 191M/217M [02:45<00:21, 1.22MiB/s]
88%|████████▊ | 191M/217M [02:45<00:25, 1.03MiB/s]
88%|████████▊ | 191M/217M [02:46<00:28, 912kiB/s]
88%|████████▊ | 191M/217M [02:46<00:30, 843kiB/s]
88%|████████▊ | 191M/217M [02:46<00:31, 828kiB/s]
88%|████████▊ | 191M/217M [02:46<00:31, 812kiB/s]
88%|████████▊ | 192M/217M [02:46<00:32, 805kiB/s]
88%|████████▊ | 192M/217M [02:46<00:32, 791kiB/s]
88%|████████▊ | 192M/217M [02:46<00:33, 765kiB/s]
88%|████████▊ | 192M/217M [02:46<00:32, 789kiB/s]
88%|████████▊ | 192M/217M [02:47<00:31, 805kiB/s]
88%|████████▊ | 192M/217M [02:47<00:30, 828kiB/s]
88%|████████▊ | 192M/217M [02:47<00:30, 840kiB/s]
88%|████████▊ | 192M/217M [02:47<00:29, 865kiB/s]
88%|████████▊ | 192M/217M [02:47<00:28, 890kiB/s]
89%|████████▊ | 192M/217M [02:47<00:27, 899kiB/s]
89%|████████▊ | 192M/217M [02:47<00:26, 924kiB/s]
89%|████████▊ | 193M/217M [02:47<00:25, 964kiB/s]
89%|████████▊ | 193M/217M [02:47<00:25, 965kiB/s]
89%|████████▊ | 193M/217M [02:47<00:24, 986kiB/s]
89%|████████▉ | 193M/217M [02:48<00:23, 1.02MiB/s]
89%|████████▉ | 193M/217M [02:48<00:23, 1.04MiB/s]
89%|████████▉ | 193M/217M [02:48<00:22, 1.05MiB/s]
89%|████████▉ | 193M/217M [02:48<00:22, 1.07MiB/s]
89%|████████▉ | 193M/217M [02:48<00:21, 1.10MiB/s]
89%|████████▉ | 194M/217M [02:48<00:21, 1.13MiB/s]
89%|████████▉ | 194M/217M [02:48<00:20, 1.15MiB/s]
89%|████████▉ | 194M/217M [02:48<00:20, 1.17MiB/s]
89%|████████▉ | 194M/217M [02:48<00:19, 1.19MiB/s]
89%|████████▉ | 194M/217M [02:49<00:19, 1.21MiB/s]
89%|████████▉ | 194M/217M [02:49<00:18, 1.23MiB/s]
89%|████████▉ | 194M/217M [02:49<00:18, 1.25MiB/s]
89%|████████▉ | 194M/217M [02:49<00:18, 1.26MiB/s]
90%|████████▉ | 195M/217M [02:49<00:17, 1.28MiB/s]
90%|████████▉ | 195M/217M [02:49<00:17, 1.31MiB/s]
90%|████████▉ | 195M/217M [02:49<00:16, 1.33MiB/s]
90%|████████▉ | 195M/217M [02:49<00:16, 1.35MiB/s]
90%|████████▉ | 195M/217M [02:49<00:16, 1.37MiB/s]
90%|████████▉ | 195M/217M [02:50<00:15, 1.38MiB/s]
90%|████████▉ | 195M/217M [02:50<00:18, 1.21MiB/s]
90%|█████████ | 196M/217M [02:50<00:15, 1.36MiB/s]
90%|█████████ | 196M/217M [02:50<00:16, 1.27MiB/s]
90%|█████████ | 196M/217M [02:50<00:19, 1.07MiB/s]
90%|█████████ | 196M/217M [02:50<00:21, 986kiB/s]
90%|█████████ | 196M/217M [02:50<00:22, 952kiB/s]
90%|█████████ | 196M/217M [02:50<00:24, 876kiB/s]
90%|█████████ | 196M/217M [02:51<00:24, 863kiB/s]
90%|█████████ | 196M/217M [02:51<00:23, 870kiB/s]
90%|█████████ | 197M/217M [02:51<00:23, 869kiB/s]
90%|█████████ | 197M/217M [02:51<00:23, 880kiB/s]
91%|█████████ | 197M/217M [02:51<00:22, 899kiB/s]
91%|█████████ | 197M/217M [02:51<00:22, 905kiB/s]
91%|█████████ | 197M/217M [02:51<00:22, 917kiB/s]
91%|█████████ | 197M/217M [02:51<00:21, 943kiB/s]
91%|█████████ | 197M/217M [02:51<00:20, 971kiB/s]
91%|█████████ | 197M/217M [02:52<00:20, 980kiB/s]
91%|█████████ | 197M/217M [02:52<00:19, 1.00MiB/s]
91%|█████████ | 198M/217M [02:52<00:19, 1.03MiB/s]
91%|█████████ | 198M/217M [02:52<00:18, 1.04MiB/s]
91%|█████████ | 198M/217M [02:52<00:18, 1.06MiB/s]
91%|█████████ | 198M/217M [02:52<00:18, 1.08MiB/s]
91%|█████████ | 198M/217M [02:52<00:17, 1.11MiB/s]
91%|█████████ | 198M/217M [02:52<00:16, 1.13MiB/s]
91%|█████████ | 198M/217M [02:52<00:16, 1.15MiB/s]
91%|█████████▏| 198M/217M [02:53<00:16, 1.16MiB/s]
91%|█████████▏| 199M/217M [02:53<00:15, 1.19MiB/s]
91%|█████████▏| 199M/217M [02:53<00:15, 1.21MiB/s]
91%|█████████▏| 199M/217M [02:53<00:15, 1.23MiB/s]
92%|█████████▏| 199M/217M [02:53<00:14, 1.24MiB/s]
92%|█████████▏| 199M/217M [02:53<00:14, 1.29MiB/s]
92%|█████████▏| 199M/217M [02:53<00:14, 1.28MiB/s]
92%|█████████▏| 199M/217M [02:53<00:15, 1.17MiB/s]
92%|█████████▏| 199M/217M [02:53<00:14, 1.24MiB/s]
92%|█████████▏| 200M/217M [02:54<00:14, 1.21MiB/s]
92%|█████████▏| 200M/217M [02:54<00:15, 1.13MiB/s]
92%|█████████▏| 200M/217M [02:54<00:15, 1.11MiB/s]
92%|█████████▏| 200M/217M [02:54<00:15, 1.11MiB/s]
92%|█████████▏| 200M/217M [02:54<00:15, 1.11MiB/s]
92%|█████████▏| 200M/217M [02:54<00:15, 1.13MiB/s]
92%|█████████▏| 200M/217M [02:54<00:14, 1.15MiB/s]
92%|█████████▏| 200M/217M [02:54<00:14, 1.17MiB/s]
92%|█████████▏| 201M/217M [02:54<00:14, 1.17MiB/s]
92%|█████████▏| 201M/217M [02:55<00:13, 1.20MiB/s]
92%|█████████▏| 201M/217M [02:55<00:13, 1.22MiB/s]
92%|█████████▏| 201M/217M [02:55<00:13, 1.23MiB/s]
93%|█████████▎| 201M/217M [02:55<00:12, 1.25MiB/s]
93%|█████████▎| 201M/217M [02:55<00:12, 1.26MiB/s]
93%|█████████▎| 201M/217M [02:55<00:12, 1.27MiB/s]
93%|█████████▎| 202M/217M [02:55<00:12, 1.30MiB/s]
93%|█████████▎| 202M/217M [02:55<00:11, 1.31MiB/s]
93%|█████████▎| 202M/217M [02:55<00:11, 1.31MiB/s]
93%|█████████▎| 202M/217M [02:55<00:11, 1.33MiB/s]
93%|█████████▎| 202M/217M [02:56<00:12, 1.21MiB/s]
93%|█████████▎| 202M/217M [02:56<00:11, 1.26MiB/s]
93%|█████████▎| 202M/217M [02:56<00:12, 1.21MiB/s]
93%|█████████▎| 202M/217M [02:56<00:13, 1.12MiB/s]
93%|█████████▎| 203M/217M [02:56<00:13, 1.12MiB/s]
93%|█████████▎| 203M/217M [02:56<00:13, 1.10MiB/s]
93%|█████████▎| 203M/217M [02:56<00:13, 1.10MiB/s]
93%|█████████▎| 203M/217M [02:56<00:12, 1.13MiB/s]
93%|█████████▎| 203M/217M [02:56<00:12, 1.15MiB/s]
94%|█████████▎| 203M/217M [02:57<00:12, 1.17MiB/s]
94%|█████████▎| 203M/217M [02:57<00:11, 1.18MiB/s]
94%|█████████▎| 203M/217M [02:57<00:11, 1.20MiB/s]
94%|█████████▎| 204M/217M [02:57<00:11, 1.22MiB/s]
94%|█████████▍| 204M/217M [02:57<00:10, 1.24MiB/s]
94%|█████████▍| 204M/217M [02:57<00:10, 1.26MiB/s]
94%|█████████▍| 204M/217M [02:57<00:10, 1.27MiB/s]
94%|█████████▍| 204M/217M [02:57<00:10, 1.28MiB/s]
94%|█████████▍| 204M/217M [02:57<00:10, 1.29MiB/s]
94%|█████████▍| 204M/217M [02:58<00:09, 1.31MiB/s]
94%|█████████▍| 205M/217M [02:58<00:09, 1.32MiB/s]
94%|█████████▍| 205M/217M [02:58<00:09, 1.32MiB/s]
94%|█████████▍| 205M/217M [02:58<00:09, 1.33MiB/s]
94%|█████████▍| 205M/217M [02:58<00:09, 1.35MiB/s]
94%|█████████▍| 205M/217M [02:58<00:08, 1.35MiB/s]
94%|█████████▍| 205M/217M [02:58<00:08, 1.37MiB/s]
95%|█████████▍| 205M/217M [02:58<00:08, 1.40MiB/s]
95%|█████████▍| 206M/217M [02:58<00:08, 1.41MiB/s]
95%|█████████▍| 206M/217M [02:58<00:08, 1.43MiB/s]
95%|█████████▍| 206M/217M [02:59<00:07, 1.45MiB/s]
95%|█████████▍| 206M/217M [02:59<00:07, 1.47MiB/s]
95%|█████████▍| 206M/217M [02:59<00:07, 1.48MiB/s]
95%|█████████▍| 206M/217M [02:59<00:07, 1.52MiB/s]
95%|█████████▌| 207M/217M [02:59<00:07, 1.53MiB/s]
95%|█████████▌| 207M/217M [02:59<00:06, 1.55MiB/s]
95%|█████████▌| 207M/217M [02:59<00:06, 1.57MiB/s]
95%|█████████▌| 207M/217M [02:59<00:06, 1.59MiB/s]
95%|█████████▌| 207M/217M [02:59<00:06, 1.61MiB/s]
95%|█████████▌| 207M/217M [03:00<00:05, 1.64MiB/s]
96%|█████████▌| 208M/217M [03:00<00:05, 1.67MiB/s]
96%|█████████▌| 208M/217M [03:00<00:05, 1.67MiB/s]
96%|█████████▌| 208M/217M [03:00<00:05, 1.68MiB/s]
96%|█████████▌| 208M/217M [03:00<00:05, 1.73MiB/s]
96%|█████████▌| 208M/217M [03:00<00:05, 1.74MiB/s]
96%|█████████▌| 209M/217M [03:00<00:04, 1.75MiB/s]
96%|█████████▌| 209M/217M [03:00<00:04, 1.78MiB/s]
96%|█████████▌| 209M/217M [03:00<00:04, 1.79MiB/s]
96%|█████████▋| 209M/217M [03:01<00:04, 1.81MiB/s]
96%|█████████▋| 209M/217M [03:01<00:04, 1.84MiB/s]
96%|█████████▋| 210M/217M [03:01<00:04, 1.85MiB/s]
97%|█████████▋| 210M/217M [03:01<00:04, 1.88MiB/s]
97%|█████████▋| 210M/217M [03:01<00:03, 1.90MiB/s]
97%|█████████▋| 210M/217M [03:01<00:03, 1.92MiB/s]
97%|█████████▋| 210M/217M [03:01<00:03, 1.94MiB/s]
97%|█████████▋| 211M/217M [03:01<00:03, 1.95MiB/s]
97%|█████████▋| 211M/217M [03:01<00:03, 1.99MiB/s]
97%|█████████▋| 211M/217M [03:01<00:03, 2.00MiB/s]
97%|█████████▋| 211M/217M [03:02<00:03, 2.01MiB/s]
97%|█████████▋| 211M/217M [03:02<00:02, 2.04MiB/s]
97%|█████████▋| 212M/217M [03:02<00:02, 2.06MiB/s]
98%|█████████▊| 212M/217M [03:02<00:02, 2.09MiB/s]
98%|█████████▊| 212M/217M [03:02<00:02, 2.10MiB/s]
98%|█████████▊| 212M/217M [03:02<00:02, 2.13MiB/s]
98%|█████████▊| 213M/217M [03:02<00:02, 2.13MiB/s]
98%|█████████▊| 213M/217M [03:02<00:02, 2.17MiB/s]
98%|█████████▊| 213M/217M [03:02<00:01, 2.18MiB/s]
98%|█████████▊| 213M/217M [03:02<00:01, 2.18MiB/s]
98%|█████████▊| 213M/217M [03:03<00:01, 2.24MiB/s]
98%|█████████▊| 214M/217M [03:03<00:01, 2.23MiB/s]
98%|█████████▊| 214M/217M [03:03<00:01, 2.25MiB/s]
99%|█████████▊| 214M/217M [03:03<00:01, 2.29MiB/s]
99%|█████████▊| 214M/217M [03:03<00:01, 2.30MiB/s]
99%|█████████▉| 215M/217M [03:03<00:01, 2.33MiB/s]
99%|█████████▉| 215M/217M [03:03<00:01, 2.34MiB/s]
99%|█████████▉| 215M/217M [03:03<00:00, 2.36MiB/s]
99%|█████████▉| 215M/217M [03:03<00:00, 2.40MiB/s]
99%|█████████▉| 216M/217M [03:04<00:00, 2.40MiB/s]
99%|█████████▉| 216M/217M [03:04<00:00, 2.44MiB/s]
100%|█████████▉| 216M/217M [03:04<00:00, 2.46MiB/s]
100%|█████████▉| 216M/217M [03:04<00:00, 2.47MiB/s]
100%|█████████▉| 217M/217M [03:04<00:00, 2.50MiB/s]
100%|█████████▉| 217M/217M [03:04<00:00, 2.50MiB/s]
100%|█████████▉| 217M/217M [03:04<00:00, 2.58MiB/s]
/home/ci/opt/venv/lib/python3.11/site-packages/mmengine/runner/checkpoint.py:347: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature.
  checkpoint = torch.load(filename, map_location=map_location)
GPU Count: 1
GPU Count to be Used: 1
GPU 0 Name: Tesla T4
GPU 0 Memory: 0.43GB/15.0GB (Used/Total)
Using 16bit Automatic Mixed Precision (AMP)
GPU available: True (cuda), used: True
TPU available: False, using: 0 TPU cores
HPU available: False, using: 0 HPUs
`Trainer(val_check_interval=1.0)` was configured so validation will run at the end of the training epoch..
LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]
| Name              | Type                             | Params | Mode 
-------------------------------------------------------------------------------
0 | model             | MMDetAutoModelForObjectDetection | 54.2 M | train
1 | validation_metric | MeanAveragePrecision             | 0      | train
-------------------------------------------------------------------------------
54.2 M    Trainable params
0         Non-trainable params
54.2 M    Total params
216.620   Total estimated model params size (MB)
592       Modules in train mode
0         Modules in eval mode
/home/ci/opt/venv/lib/python3.11/site-packages/mmdet/models/backbones/csp_darknet.py:118: FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead.
  with torch.cuda.amp.autocast(enabled=False):
/home/ci/opt/venv/lib/python3.11/site-packages/torch/functional.py:534: UserWarning: torch.meshgrid: in an upcoming release, it will be required to pass the indexing argument. (Triggered internally at ../aten/src/ATen/native/TensorShape.cpp:3595.)
  return _VF.meshgrid(tensors, **kwargs)  # type: ignore[attr-defined]
/home/ci/opt/venv/lib/python3.11/site-packages/mmdet/models/task_modules/assigners/sim_ota_assigner.py:118: FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead.
  with torch.cuda.amp.autocast(enabled=False):
Epoch 2, global step 15: 'val_map' reached 0.33114 (best 0.33114), saving model to '/home/ci/autogluon/docs/tutorials/multimodal/object_detection/quick_start/tmp/95ba80ae08dd4fb69f42bff3457eddca-quick_start_tutorial_temp_save/epoch=2-step=15.ckpt' as top 1
Epoch 5, global step 30: 'val_map' reached 0.34902 (best 0.34902), saving model to '/home/ci/autogluon/docs/tutorials/multimodal/object_detection/quick_start/tmp/95ba80ae08dd4fb69f42bff3457eddca-quick_start_tutorial_temp_save/epoch=5-step=30.ckpt' as top 1
Epoch 8, global step 45: 'val_map' reached 0.35936 (best 0.35936), saving model to '/home/ci/autogluon/docs/tutorials/multimodal/object_detection/quick_start/tmp/95ba80ae08dd4fb69f42bff3457eddca-quick_start_tutorial_temp_save/epoch=8-step=45.ckpt' as top 1
Epoch 11, global step 60: 'val_map' reached 0.43478 (best 0.43478), saving model to '/home/ci/autogluon/docs/tutorials/multimodal/object_detection/quick_start/tmp/95ba80ae08dd4fb69f42bff3457eddca-quick_start_tutorial_temp_save/epoch=11-step=60.ckpt' as top 1
Epoch 14, global step 75: 'val_map' was not in top 1
Epoch 17, global step 90: 'val_map' reached 0.44727 (best 0.44727), saving model to '/home/ci/autogluon/docs/tutorials/multimodal/object_detection/quick_start/tmp/95ba80ae08dd4fb69f42bff3457eddca-quick_start_tutorial_temp_save/epoch=17-step=90.ckpt' as top 1
Epoch 20, global step 105: 'val_map' was not in top 1
Epoch 23, global step 120: 'val_map' was not in top 1
Epoch 26, global step 135: 'val_map' reached 0.44859 (best 0.44859), saving model to '/home/ci/autogluon/docs/tutorials/multimodal/object_detection/quick_start/tmp/95ba80ae08dd4fb69f42bff3457eddca-quick_start_tutorial_temp_save/epoch=26-step=135.ckpt' as top 1
Epoch 29, global step 150: 'val_map' reached 0.45323 (best 0.45323), saving model to '/home/ci/autogluon/docs/tutorials/multimodal/object_detection/quick_start/tmp/95ba80ae08dd4fb69f42bff3457eddca-quick_start_tutorial_temp_save/epoch=29-step=150.ckpt' as top 1
Epoch 32, global step 165: 'val_map' was not in top 1
Epoch 35, global step 180: 'val_map' was not in top 1
Epoch 38, global step 195: 'val_map' was not in top 1
Epoch 41, global step 210: 'val_map' reached 0.45324 (best 0.45324), saving model to '/home/ci/autogluon/docs/tutorials/multimodal/object_detection/quick_start/tmp/95ba80ae08dd4fb69f42bff3457eddca-quick_start_tutorial_temp_save/epoch=41-step=210.ckpt' as top 1
Epoch 44, global step 225: 'val_map' reached 0.45510 (best 0.45510), saving model to '/home/ci/autogluon/docs/tutorials/multimodal/object_detection/quick_start/tmp/95ba80ae08dd4fb69f42bff3457eddca-quick_start_tutorial_temp_save/epoch=44-step=225.ckpt' as top 1
Epoch 47, global step 240: 'val_map' reached 0.45563 (best 0.45563), saving model to '/home/ci/autogluon/docs/tutorials/multimodal/object_detection/quick_start/tmp/95ba80ae08dd4fb69f42bff3457eddca-quick_start_tutorial_temp_save/epoch=47-step=240.ckpt' as top 1
`Trainer.fit` stopped: `max_epochs=50` reached.
/home/ci/autogluon/multimodal/src/autogluon/multimodal/utils/checkpoint.py:63: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature.
  avg_state_dict = torch.load(checkpoint_paths[0], map_location=torch.device("cpu"))["state_dict"]  # nosec B614
AutoMM has created your model. 🎉🎉🎉

To load the model, use the code below:
    ```python
    from autogluon.multimodal import MultiModalPredictor
    predictor = MultiModalPredictor.load("/home/ci/autogluon/docs/tutorials/multimodal/object_detection/quick_start/tmp/95ba80ae08dd4fb69f42bff3457eddca-quick_start_tutorial_temp_save")
    ```

If you are not satisfied with the model, try to increase the training time, 
adjust the hyperparameters (https://auto.gluon.ai/stable/tutorials/multimodal/advanced_topics/customization.html),
or post issues on GitHub (https://github.com/autogluon/autogluon/issues).

Notice that at the end of each progress bar, if the checkpoint at current stage is saved, it prints the model’s save path. In this example, it’s ./quick_start_tutorial_temp_save.

Print out the time and we can see that it’s fast!

print("This finetuning takes %.2f seconds." % (train_end - start))
This finetuning takes 719.99 seconds.

Evaluation

To evaluate the model we just trained, run following code.

And the evaluation results are shown in command line output. The first line is mAP in COCO standard, and the second line is mAP in VOC standard (or mAP50). For more details about these metrics, see COCO’s evaluation guideline. Note that for presenting a fast finetuning we use presets “medium_quality”, you could get better result on this dataset by simply using “high_quality” or “best_quality” presets, or customize your own model and hyperparameter settings: Customization, and some other examples at Fast Fine-tune Coco or High Performance Fine-tune Coco.

predictor.evaluate(test_path)
eval_end = time.time()
loading annotations into memory...
Done (t=0.00s)
creating index...
index created!
saving file at /home/ci/autogluon/docs/tutorials/multimodal/object_detection/quick_start/AutogluonModels/ag-20250205_031139/object_detection_result_cache.json
loading annotations into memory...
Done (t=0.00s)
creating index...
index created!
Loading and preparing results...
DONE (t=0.00s)
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=0.08s).
Accumulating evaluation results...
DONE (t=0.03s).
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.358
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.516
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.379
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.215
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.450
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.751
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.250
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.416
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.440
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.392
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.522
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.812
Using default root folder: ./tiny_motorbike_coco/tiny_motorbike/Annotations/... Specify `model.mmdet_image.coco_root=...` in hyperparameters if you think it is wrong.
/home/ci/opt/venv/lib/python3.11/site-packages/mmdet/models/backbones/csp_darknet.py:118: FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead.
  with torch.cuda.amp.autocast(enabled=False):
A new predictor save path is created. This is to prevent you to overwrite previous predictor saved here. You could check current save path at predictor._save_path. If you still want to use this path, set resume=True
No path specified. Models will be saved in: "AutogluonModels/ag-20250205_031139"

Print out the evaluation time:

print("The evaluation takes %.2f seconds." % (eval_end - train_end))
The evaluation takes 1.89 seconds.

We can load a new predictor with previous save_path, and we can also reset the number of GPUs to use if not all the devices are available:

# Load and reset num_gpus
new_predictor = MultiModalPredictor.load(model_path)
new_predictor.set_num_gpus(1)
Load pretrained checkpoint: /home/ci/autogluon/docs/tutorials/multimodal/object_detection/quick_start/tmp/95ba80ae08dd4fb69f42bff3457eddca-quick_start_tutorial_temp_save/model.ckpt
/home/ci/autogluon/multimodal/src/autogluon/multimodal/learners/base.py:2117: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature.
  state_dict = torch.load(path, map_location=torch.device("cpu"))["state_dict"]  # nosec B614

Evaluating the new predictor gives us exactly the same result:

# Evaluate new predictor
new_predictor.evaluate(test_path)
loading annotations into memory...
Done (t=0.00s)
creating index...
index created!
saving file at /home/ci/autogluon/docs/tutorials/multimodal/object_detection/quick_start/AutogluonModels/ag-20250205_031144/object_detection_result_cache.json
loading annotations into memory...
Done (t=0.00s)
creating index...
index created!
Loading and preparing results...
DONE (t=0.00s)
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=0.08s).
Accumulating evaluation results...
DONE (t=0.03s).
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.358
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.516
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.379
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.215
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.450
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.751
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.250
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.416
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.440
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.392
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.522
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.812
Using default root folder: ./tiny_motorbike_coco/tiny_motorbike/Annotations/... Specify `model.mmdet_image.coco_root=...` in hyperparameters if you think it is wrong.
/home/ci/opt/venv/lib/python3.11/site-packages/mmdet/models/backbones/csp_darknet.py:118: FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead.
  with torch.cuda.amp.autocast(enabled=False):
A new predictor save path is created. This is to prevent you to overwrite previous predictor saved here. You could check current save path at predictor._save_path. If you still want to use this path, set resume=True
No path specified. Models will be saved in: "AutogluonModels/ag-20250205_031144"
{'map': 0.3583638102025215,
 'mean_average_precision': 0.3583638102025215,
 'map_50': 0.5162189109732803,
 'map_75': 0.37926466733124664,
 'map_small': 0.21460996477647665,
 'map_medium': 0.45018566230019214,
 'map_large': 0.7510578004619188,
 'mar_1': 0.25046276720695326,
 'mar_10': 0.4161428235846841,
 'mar_100': 0.4395503875968992,
 'mar_small': 0.3920833333333334,
 'mar_medium': 0.5222222222222223,
 'mar_large': 0.8122986954565902}

For how to set the hyperparameters and finetune the model with higher performance, see AutoMM Detection - High Performance Finetune on COCO Format Dataset.

Inference

Now that we have gone through the model setup, finetuning, and evaluation, this section details the inference. Specifically, we layout the steps for using the model to make predictions and visualize the results.

To run inference on the entire test set, perform:

pred = predictor.predict(test_path)
print(pred)
loading annotations into memory...
Done (t=0.00s)
creating index...
index created!
[<InstanceData(

    META INFORMATION

    DATA FIELDS
    bboxes: tensor([[ 1.5949e+02,  1.7286e+02,  2.7762e+02,  2.4354e+02],
                [ 1.9343e+02,  1.1092e+02,  2.6048e+02,  2.3400e+02],
                [ 4.4893e-01,  2.3106e+02,  4.2202e+01,  3.1386e+02],
                [ 1.8016e-01,  1.8493e+02,  4.2056e+01,  3.1468e+02],
                [-3.4826e-02,  1.4994e+02,  4.2418e+01,  3.1686e+02],
                [-4.5239e-02,  2.2318e+02,  1.1654e+01,  3.2018e+02],
                [ 9.7014e-02,  2.1312e+02,  1.1957e+01,  3.2477e+02],
                [ 3.3659e-01,  1.8794e+02,  1.8828e+01,  3.1518e+02],
                [ 9.4490e-02,  2.2240e+02,  1.2106e+01,  3.1979e+02],
                [-8.5527e-02,  1.6001e+02,  1.3818e+01,  3.1499e+02],
                [ 2.0525e+00,  1.1849e+02,  4.5164e+01,  3.1901e+02]])
    scores: tensor([0.9453, 0.9102, 0.6841, 0.0774, 0.0299, 0.0279, 0.0229, 0.0211, 0.0196,
                0.0136, 0.0120])
    labels: tensor([0, 8, 7, 7, 3, 7, 3, 8, 8, 8, 7])
) at 0x7f6eabe23b10>, <InstanceData(

    META INFORMATION

    DATA FIELDS
    bboxes: tensor([[ 2.0863e+02,  1.3762e+02,  2.7419e+02,  2.1981e+02],
                [ 1.1630e+02,  1.5525e+02,  1.8097e+02,  2.0100e+02],
                [ 2.2147e+02,  1.0611e+02,  2.7228e+02,  1.8703e+02],
                [ 2.7935e+02,  3.1456e+02,  2.9526e+02,  3.3268e+02],
                [ 4.6394e+02,  2.7135e+02,  4.8606e+02,  3.2391e+02],
                [ 3.5933e+02,  3.1732e+02,  3.7700e+02,  3.3266e+02],
                [ 4.3572e+02,  2.7772e+02,  4.5021e+02,  3.2887e+02],
                [ 4.2122e+02,  2.6843e+02,  4.3816e+02,  3.2214e+02],
                [ 4.5423e+02,  2.7653e+02,  4.6609e+02,  3.2420e+02],
                [ 2.6752e+02,  3.1721e+02,  2.8209e+02,  3.3277e+02],
                [ 3.9852e+02,  2.7731e+02,  4.1867e+02,  3.0935e+02],
                [ 4.8926e+02,  2.7318e+02,  4.9980e+02,  3.3067e+02],
                [ 3.8125e+02,  2.7142e+02,  3.9844e+02,  2.9843e+02],
                [ 2.3892e+02,  7.0352e+01,  2.4506e+02,  8.9113e+01],
                [ 5.7401e-01,  1.6516e+02,  1.1389e+01,  2.1571e+02],
                [ 8.9887e-01,  3.3685e+01,  4.8759e+01,  3.3078e+02],
                [ 8.2498e+00,  1.7394e+02,  1.9485e+01,  2.0909e+02],
                [ 4.0183e+02,  2.7243e+02,  4.2161e+02,  3.1345e+02],
                [ 4.9303e+02,  2.7300e+02,  4.9994e+02,  3.2734e+02],
                [ 4.0397e+02,  2.6489e+02,  4.1869e+02,  2.8503e+02],
                [ 1.7020e+02,  3.2578e+02,  1.8312e+02,  3.3241e+02],
                [ 4.4656e+02,  2.7641e+02,  4.5735e+02,  3.2706e+02],
                [ 4.1075e+02,  2.7888e+02,  4.2597e+02,  3.1638e+02],
                [-7.8756e-01, -8.0091e-01,  6.5143e+01,  3.3849e+02],
                [ 4.7877e+02,  2.6404e+02,  4.9310e+02,  3.2770e+02],
                [ 3.8189e+02,  1.4386e+02,  3.9818e+02,  1.7624e+02],
                [ 3.8505e+01,  2.3121e+00,  5.0564e+02,  2.9825e+02],
                [ 4.5629e-02,  1.3304e+02,  2.0877e+01,  2.7618e+02],
                [ 3.3328e+00,  1.6729e+02,  1.6931e+01,  2.1359e+02],
                [ 3.5683e+02,  3.1758e+02,  3.8497e+02,  3.3318e+02]])
    scores: tensor([0.8960, 0.8560, 0.8486, 0.7993, 0.7739, 0.7178, 0.6528, 0.5854, 0.3933,
                0.2573, 0.1842, 0.1476, 0.1434, 0.1252, 0.1139, 0.0759, 0.0751, 0.0743,
                0.0616, 0.0556, 0.0518, 0.0463, 0.0284, 0.0231, 0.0154, 0.0151, 0.0120,
                0.0114, 0.0112, 0.0106])
    labels: tensor([7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
                8, 8, 7, 8, 8, 8])
) at 0x7f6eabe023d0>, <InstanceData(

    META INFORMATION

    DATA FIELDS
    bboxes: tensor([[ 1.9805e+02,  7.8047e+01,  3.1367e+02,  3.2234e+02],
                [ 3.3665e+02,  3.6290e+00,  4.3640e+02,  3.7606e+02],
                [ 4.5794e+02,  1.0647e+02,  4.9909e+02,  2.3826e+02],
                [ 2.8340e+02,  5.3094e+01,  3.3496e+02,  3.2776e+02],
                [ 1.4237e+01,  1.1797e+02,  3.7170e+02,  3.7344e+02],
                [ 1.0898e-01,  5.2452e-03,  4.7645e+02,  3.6738e+02],
                [ 7.9954e-01, -1.6418e+00,  2.7811e+02,  3.4891e+02],
                [ 1.1006e+00,  1.0145e+02,  2.0359e+02,  3.5246e+02],
                [ 4.5175e+02,  1.8025e+01,  4.8418e+02,  5.5169e+01],
                [ 1.3107e-01,  1.0285e+02,  1.0378e+02,  3.2879e+02],
                [-6.9836e-01,  1.0352e+02,  2.6339e+02,  3.4257e+02],
                [ 1.8642e+02,  5.4641e-01,  4.4795e+02,  3.7152e+02],
                [-1.3424e+00,  2.4999e-01,  2.7869e+02,  3.4604e+02],
                [ 2.1678e+02,  4.0046e+00,  4.9845e+02,  2.5947e+02],
                [ 4.7124e+02,  1.0832e+02,  4.9986e+02,  1.9227e+02],
                [-8.4257e-01, -6.7982e+00,  8.5315e+01,  3.5914e+02],
                [ 1.9784e+02,  3.9407e+00,  5.0841e+02,  3.2125e+02],
                [-2.3549e-01,  1.0322e+02,  1.0160e+02,  3.2960e+02],
                [-2.6002e+00,  3.1924e+00,  1.7574e+02,  3.5306e+02],
                [ 9.3662e+00, -3.8147e-02,  2.7657e+02,  2.0766e+02],
                [ 2.8052e+01,  1.2898e-02,  2.7566e+02,  1.8241e+02],
                [ 3.2046e+02,  2.0945e+00,  4.9673e+02,  2.1060e+02],
                [-1.2353e+00, -2.7762e+00,  5.4556e+01,  3.3500e+02],
                [-2.5234e+00,  1.2048e+00,  1.7254e+02,  3.4430e+02],
                [ 4.7910e+02,  1.0712e+02,  4.9981e+02,  2.2999e+02]])
    scores: tensor([0.9282, 0.9111, 0.8633, 0.8408, 0.8369, 0.3669, 0.3191, 0.2158, 0.1727,
                0.1481, 0.1069, 0.0688, 0.0546, 0.0379, 0.0350, 0.0183, 0.0174, 0.0167,
                0.0154, 0.0142, 0.0125, 0.0119, 0.0111, 0.0106, 0.0101])
    labels: tensor([8, 8, 3, 8, 7, 7, 7, 8, 9, 8, 7, 8, 8, 3, 3, 8, 7, 7, 7, 7, 3, 3, 8, 8,
                3])
) at 0x7f6eabe26050>, <InstanceData(

    META INFORMATION

    DATA FIELDS
    bboxes: tensor([[ 1.0799e+00,  3.3202e+01,  4.9931e+02,  3.3497e+02],
                [ 1.8740e+02,  1.0514e+00,  3.9307e+02,  1.2734e+02],
                [-1.8904e-01,  2.5856e+00,  4.2597e+02,  1.5522e+02],
                [ 3.3489e+02, -2.7676e+00,  4.9871e+02,  3.3323e+02],
                [ 1.9764e+02,  2.4755e+00,  4.9572e+02,  1.6559e+02],
                [-1.1692e+00,  5.8388e+01,  2.1777e+02,  1.7807e+02],
                [ 3.8644e+02,  4.8455e-01,  5.0027e+02,  1.1218e+02],
                [ 2.2351e+02,  5.7292e+00,  4.9759e+02,  3.3587e+02],
                [-2.1287e+00,  1.5164e+00,  1.9451e+02,  1.6479e+02],
                [-7.0671e-01,  5.6985e+01,  2.9680e+02,  3.3015e+02],
                [ 4.7823e+02,  2.2347e+01,  4.9989e+02,  1.7894e+02],
                [ 1.0020e-01,  5.7097e+01,  9.3552e+01,  1.6901e+02],
                [ 3.4127e+00,  7.2258e+01,  2.1319e+02,  1.5131e+02],
                [ 1.9919e+02, -2.4398e+00,  5.0316e+02,  1.7324e+02],
                [-1.9259e-01,  5.6670e+01,  5.7663e+01,  1.6924e+02],
                [ 4.1314e-01,  4.5480e+01,  2.2986e+02,  3.2621e+02],
                [ 3.7464e+02, -5.9886e-01,  5.0036e+02,  1.7286e+02],
                [ 4.7872e+02,  2.0141e+01,  5.0019e+02,  1.2819e+02],
                [ 4.6208e+02,  7.3278e+00,  4.9964e+02,  3.2606e+02],
                [ 2.9321e+00,  1.2378e+02,  5.0605e+02,  3.1710e+02],
                [ 4.6963e+02,  5.7216e+00,  4.9990e+02,  2.7100e+02],
                [ 3.1725e+02,  1.0222e+01,  4.9525e+02,  3.3020e+02]])
    scores: tensor([0.9609, 0.3206, 0.1643, 0.1229, 0.0677, 0.0414, 0.0322, 0.0316, 0.0272,
                0.0270, 0.0198, 0.0196, 0.0177, 0.0166, 0.0152, 0.0140, 0.0135, 0.0120,
                0.0115, 0.0111, 0.0108, 0.0108])
    labels: tensor([7, 7, 7, 8, 7, 7, 8, 8, 8, 7, 7, 7, 7, 8, 7, 8, 8, 7, 8, 7, 7, 7])
) at 0x7f6eaae05250>, <InstanceData(

    META INFORMATION

    DATA FIELDS
    bboxes: tensor([[ 95.1110, 199.3266, 139.2640, 225.2828],
                [331.7704, 188.2250, 360.4171, 209.0406],
                [273.0836, 191.3272, 305.0414, 216.0947],
                [111.2057, 186.1958, 133.9115, 221.2261],
                [218.8869, 189.5133, 258.4569, 217.5179],
                [177.2577, 190.9004, 212.3908, 220.4277],
                [419.2517, 271.1425, 499.4983, 373.7794],
                [284.6994, 182.0486, 300.8475, 210.9201],
                [228.2201, 179.0968, 248.7330, 215.2391],
                [147.4925, 186.4819, 169.4997, 218.5962],
                [139.7806, 201.8128, 175.2585, 221.2341],
                [291.2434, 177.8954, 308.3659, 209.6046],
                [338.5934, 182.1462, 356.3286, 204.9632],
                [177.4970, 177.7211, 200.6280, 214.0758],
                [259.5348, 344.3858, 347.4965, 374.7549],
                [280.5911, 187.7161, 315.1120, 209.7448],
                [225.5203, 184.6283, 245.5734, 212.4421],
                [255.0446, 316.0262, 501.2054, 376.9425],
                [281.6905, 184.2923, 297.9970, 211.0202],
                [185.1431, 178.8218, 202.5522, 215.3188],
                [231.3303, 241.9787, 437.8103, 306.0682],
                [233.8000, 179.0285, 252.5281, 213.7449],
                [430.5262, 303.1158, 500.7238, 376.1811],
                [259.6618, 336.2666, 497.3694, 375.4521],
                [391.1815, 298.2749, 500.2247, 374.7720],
                [229.8827, 183.3845, 243.5548, 209.5843],
                [419.5640, 272.4094, 499.1860, 375.2469],
                [248.6142, 249.9593, 498.6515, 378.1657],
                [292.9993, 187.4700, 315.5945, 208.4285],
                [464.0344, 299.8455, 500.0281, 376.7170],
                [261.2922, 344.7435, 313.3171, 375.1784],
                [260.3998, 345.2148, 421.2408, 374.7071],
                [346.2735, 230.7792, 387.7109, 264.5334],
                [388.1076, 327.9276, 500.1736, 374.4161],
                [343.4374, 184.5252, 383.9063, 264.3029]])
    scores: tensor([0.9385, 0.9028, 0.8857, 0.8838, 0.8760, 0.8687, 0.8638, 0.8145, 0.7988,
                0.7939, 0.7900, 0.7837, 0.7827, 0.7817, 0.5972, 0.4429, 0.4255, 0.2386,
                0.2218, 0.1663, 0.1172, 0.1146, 0.0994, 0.0679, 0.0392, 0.0355, 0.0341,
                0.0329, 0.0247, 0.0218, 0.0195, 0.0187, 0.0152, 0.0142, 0.0117])
    labels: tensor([7, 7, 7, 8, 7, 7, 8, 8, 8, 8, 7, 8, 8, 8, 7, 7, 8, 7, 8, 8, 7, 8, 7, 7,
                7, 8, 7, 7, 7, 7, 7, 7, 4, 7, 8])
) at 0x7f6eab365f50>, <InstanceData(

    META INFORMATION

    DATA FIELDS
    bboxes: tensor([[252.9008, 136.8273, 382.6461, 311.5455],
                [271.7205,  80.0086, 381.4045, 246.4005],
                [435.8845,  41.6593, 449.2717,  87.8294],
                [410.1651,  42.4456, 423.4287,  89.3885],
                [425.3668,  44.0746, 436.3520,  88.7368],
                [326.1855,  62.6358, 389.0489, 134.4801],
                [391.4235,  40.3942, 405.8421,  90.5603],
                [324.8606,  29.1994, 372.4051, 114.8506],
                [180.2437,  69.6167, 226.7875, 116.6515],
                [463.9769,  40.6230, 478.9919,  94.3384],
                [277.3724,  40.4621, 292.5495,  63.5197],
                [261.8165,  43.8454, 276.0741,  62.7751],
                [291.4538,  41.2763, 304.6400,  62.7055],
                [304.7170,  39.4350, 315.5955,  63.7650],
                [383.6921,  37.9736, 395.6048,  90.3423],
                [371.5536,  46.8245, 383.5245,  76.6050],
                [456.4921,  43.1998, 467.7267,  90.8820],
                [230.7163,  46.1030, 241.9400,  71.9515],
                [215.6832,  46.3213, 230.8012,  78.9650],
                [278.1380,  40.5227, 292.1745,  88.6728],
                [157.4412,  41.7595, 169.5119,  61.8314],
                [236.0452,  38.1713, 251.0642,  63.4651],
                [262.3376,  43.8400, 276.7250,  85.7464],
                [314.6213,  43.9939, 329.9100,  80.8039],
                [165.3644,  36.0461, 495.9637, 315.1857],
                [453.4666,  44.8437, 466.0647,  88.8472],
                [  3.4909,  46.7752, 412.5247, 325.3702],
                [237.5403,  45.1541, 251.1316,  84.5300],
                [315.2922,  43.0372, 331.5828,  68.8605],
                [363.5735,  42.0324, 376.2703,  63.4153],
                [405.3694,  45.0383, 415.7243,  92.0731],
                [478.7159,  43.6131, 491.5966,  94.7687],
                [459.0081,  43.6638, 468.3356,  69.2112],
                [215.0722,  45.6015, 222.8185,  60.8235],
                [321.5871,  29.3248, 365.9129,  65.8127],
                [304.9916,  39.3440, 316.4928,  87.2128],
                [224.2730,  29.8893, 492.5239, 309.0289],
                [176.9397,  69.4358, 226.1854, 159.6369],
                [  1.3257,  26.7514, 355.3149, 323.8940],
                [372.4684,  45.4404, 384.5628,  69.4869],
                [477.7222,  41.5251, 490.2466,  67.9294],
                [  5.6064, 106.6938, 326.0342, 324.0880],
                [384.8130,  43.9747, 394.8745,  82.8753],
                [483.1195,  42.5475, 497.3493,  66.7116],
                [ 16.0648,  52.6215,  36.7184,  65.2376],
                [172.4033,  32.8547, 492.8311, 310.3635],
                [320.9645,  41.9129, 339.9730,  64.4144],
                [490.8883,  46.7338, 499.7367,  66.7275],
                [130.2133,  27.2491, 462.7555, 312.4508],
                [292.7245,  42.8300, 306.8849,  88.4177],
                [315.1185,  33.9293, 495.0378, 316.9116],
                [410.1078,  44.5338, 418.7984,  79.6776],
                [481.6203,  41.6503, 494.9423,  66.9247],
                [324.1836,  45.2961, 345.3477,  89.9584],
                [176.5927,  88.4452, 219.8917, 165.8411],
                [324.4941,  35.8866, 354.0215,  71.8088],
                [  6.9772,  33.4952, 300.4446, 322.6230],
                [315.0451,  43.3499, 341.2049,  84.5751]])
    scores: tensor([0.9468, 0.9258, 0.8696, 0.8540, 0.8457, 0.8330, 0.8252, 0.8125, 0.7754,
                0.7612, 0.7227, 0.6284, 0.5981, 0.5596, 0.5522, 0.5425, 0.5400, 0.4678,
                0.4377, 0.2830, 0.2576, 0.2452, 0.2433, 0.2069, 0.1964, 0.1963, 0.1777,
                0.1582, 0.1444, 0.1217, 0.1013, 0.0853, 0.0833, 0.0598, 0.0491, 0.0444,
                0.0433, 0.0431, 0.0431, 0.0356, 0.0344, 0.0343, 0.0224, 0.0208, 0.0195,
                0.0165, 0.0164, 0.0164, 0.0162, 0.0154, 0.0148, 0.0140, 0.0132, 0.0118,
                0.0113, 0.0111, 0.0109, 0.0105])
    labels: tensor([7, 8, 8, 8, 8, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
                7, 8, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 7, 8, 7, 3, 3, 8, 7,
                8, 8, 3, 8, 8, 8, 7, 8, 3, 8])
) at 0x7f6eabe00950>, <InstanceData(

    META INFORMATION

    DATA FIELDS
    bboxes: tensor([[1.0368e+02, 4.4978e+01, 3.0827e+02, 4.6948e+02],
                [2.3648e+00, 7.9438e+01, 3.2360e+02, 4.9087e+02],
                [2.2936e+02, 2.3924e+02, 2.7131e+02, 2.7599e+02],
                [9.8529e+01, 1.4062e+02, 1.3832e+02, 2.0782e+02],
                [2.7003e+02, 1.7353e+02, 3.3226e+02, 4.2608e+02],
                [2.6146e+02, 1.8104e+02, 3.3927e+02, 4.8029e+02],
                [2.3989e-01, 1.5214e+02, 8.2366e+00, 1.6466e+02],
                [7.0752e+00, 5.5161e+01, 3.4703e+02, 3.7062e+02],
                [7.4041e+01, 1.3568e+02, 1.3799e+02, 3.1901e+02],
                [9.2785e+01, 1.3729e+02, 1.3840e+02, 3.0099e+02],
                [2.5754e+02, 2.3883e+02, 2.7636e+02, 2.5414e+02],
                [1.0363e+01, 4.0658e+01, 3.4374e+02, 3.4821e+02],
                [2.7210e+02, 8.8759e+01, 3.3762e+02, 3.4523e+02]])
    scores: tensor([0.8921, 0.8550, 0.7310, 0.6924, 0.6353, 0.6279, 0.0678, 0.0650, 0.0326,
                0.0304, 0.0271, 0.0230, 0.0133])
    labels: tensor([8, 7, 3, 8, 7, 7, 3, 7, 8, 8, 3, 3, 7])
) at 0x7f6e95e19210>, <InstanceData(

    META INFORMATION

    DATA FIELDS
    bboxes: tensor([[9.8267e+01, 1.4466e+02, 3.7830e+02, 3.0718e+02],
                [2.1105e+02, 1.0470e+02, 2.9169e+02, 3.1671e+02],
                [2.7617e+02, 1.1065e+02, 3.3047e+02, 2.6276e+02],
                [2.0350e+02, 1.3048e+02, 2.1642e+02, 1.5085e+02],
                [3.1125e+02, 1.2967e+02, 3.3172e+02, 1.8014e+02],
                [1.8105e+02, 1.2695e+02, 1.9864e+02, 1.4618e+02],
                [2.0420e+02, 1.1298e+02, 2.1689e+02, 1.5137e+02],
                [6.8150e+01, 2.0840e+02, 1.2462e+02, 2.3017e+02],
                [1.8374e+02, 1.3160e+02, 2.0181e+02, 1.4816e+02],
                [8.8566e+01, 5.8522e+00, 5.0323e+02, 3.2405e+02],
                [2.0226e+02, 1.0399e+02, 2.1844e+02, 1.5177e+02],
                [1.8929e+02, 1.3421e+02, 2.0271e+02, 1.4965e+02],
                [2.0035e+02, 1.2548e+02, 2.1332e+02, 1.5039e+02],
                [1.6054e+02, 2.7083e-01, 4.9766e+02, 3.1110e+02],
                [1.8319e+02, 1.3154e+02, 1.9611e+02, 1.4588e+02]])
    scores: tensor([0.9390, 0.9043, 0.8770, 0.7764, 0.6641, 0.4568, 0.4185, 0.0911, 0.0858,
                0.0529, 0.0468, 0.0411, 0.0309, 0.0199, 0.0128])
    labels: tensor([7, 8, 8, 9, 8, 9, 9, 3, 9, 7, 9, 9, 9, 3, 9])
) at 0x7f6eabe03910>, <InstanceData(

    META INFORMATION

    DATA FIELDS
    bboxes: tensor([[6.9821e+01, 1.0027e+02, 4.3291e+02, 3.5129e+02],
                [1.6210e+02, 3.8147e+01, 1.7208e+02, 5.3162e+01],
                [1.0525e+02, 5.3472e+01, 1.1956e+02, 7.8852e+01],
                [1.4444e+02, 4.9035e+01, 1.8584e+02, 8.3387e+01],
                [1.1636e+02, 4.8113e+01, 1.4751e+02, 8.3625e+01],
                [1.2000e+00, 2.3959e+01, 4.6833e+02, 3.6706e+02],
                [1.5011e+02, 3.7938e+01, 1.6082e+02, 5.2541e+01],
                [1.1593e+02, 5.0582e+01, 1.3681e+02, 8.3012e+01],
                [1.3097e+02, 3.8835e+01, 1.4579e+02, 5.3938e+01],
                [1.3948e+02, 5.0758e+01, 1.6071e+02, 8.5960e+01],
                [5.4784e+01, 5.1130e+01, 9.5899e+01, 7.6116e+01],
                [3.4188e+01, 4.5811e+01, 6.0734e+01, 7.6846e+01],
                [7.2877e+01, 5.3141e+01, 9.6557e+01, 7.5473e+01],
                [4.1508e+01, 4.9494e+01, 8.9156e+01, 7.6776e+01],
                [9.0056e+01, 4.4005e+01, 1.1287e+02, 7.0448e+01],
                [1.8556e+02, 3.9457e+01, 2.2069e+02, 9.3649e+01],
                [1.8507e+02, 3.1106e+01, 2.4071e+02, 9.4773e+01],
                [4.8129e+01, 5.1044e+01, 7.8922e+01, 7.6104e+01],
                [3.2952e+01, 4.5540e+01, 4.7810e+01, 6.7350e+01],
                [3.9677e+01, 5.1522e+01, 6.2179e+01, 7.6212e+01],
                [3.3057e+01, 3.6998e+01, 4.6826e+01, 6.5444e+01],
                [3.4447e+01, 4.6192e+01, 5.1002e+01, 7.0410e+01],
                [4.1438e+01, 4.9431e+01, 7.1843e+01, 7.7034e+01],
                [2.7180e+02, 4.0618e-01, 5.0125e+02, 9.8227e+01],
                [1.3331e+02, 4.5638e+01, 1.5263e+02, 8.6393e+01],
                [1.1657e+02, 6.3054e+01, 1.5179e+02, 8.4993e+01]])
    scores: tensor([0.9087, 0.6587, 0.5493, 0.5332, 0.5166, 0.4238, 0.3997, 0.3262, 0.3044,
                0.2610, 0.2544, 0.2267, 0.2267, 0.1737, 0.1281, 0.1127, 0.1022, 0.0969,
                0.0965, 0.0789, 0.0684, 0.0614, 0.0338, 0.0234, 0.0181, 0.0110])
    labels: tensor([7, 8, 7, 7, 7, 7, 8, 7, 8, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 7, 7, 7,
                7, 7])
) at 0x7f6e95e19350>, <InstanceData(

    META INFORMATION

    DATA FIELDS
    bboxes: tensor([[ 4.9048e+01,  2.5264e+01,  4.4783e+02,  3.2161e+02],
                [ 3.1588e+02,  4.6516e+01,  4.8412e+02,  1.6012e+02],
                [ 3.5119e+02,  5.6649e-01,  4.5585e+02,  1.3107e+02],
                [ 2.2746e+01,  1.3700e+02,  5.9774e+01,  1.6827e+02],
                [ 2.1707e-01,  1.1838e+02,  1.7691e+01,  2.0643e+02],
                [ 1.4899e-02,  1.2599e+02,  1.2381e+01,  2.0838e+02],
                [ 8.6492e-02,  1.3381e+02,  1.1248e+01,  2.0994e+02],
                [-4.9552e-02,  1.4043e+02,  7.6606e+00,  2.1113e+02],
                [ 4.7986e-02,  1.3644e+02,  8.5824e+00,  2.1024e+02],
                [ 2.8458e-01,  1.3772e+02,  1.3509e+01,  1.8162e+02],
                [ 1.1998e+00,  3.2825e+01,  1.7009e+02,  1.5907e+02],
                [-3.5938e-01,  1.3756e+02,  2.4725e+01,  1.7181e+02],
                [ 9.7826e-01,  6.5402e+01,  4.4090e+01,  2.0843e+02],
                [ 8.8185e-02,  7.5439e+01,  1.9467e+01,  2.0620e+02],
                [-2.2707e-01,  1.3841e+02,  2.4324e+01,  1.7213e+02],
                [-6.0158e-01,  3.5221e+01,  1.7502e+02,  2.1712e+02],
                [ 2.4664e+01,  1.4045e+02,  5.9320e+01,  1.6854e+02]])
    scores: tensor([0.9355, 0.9292, 0.9224, 0.3291, 0.1145, 0.1139, 0.0505, 0.0311, 0.0279,
                0.0253, 0.0244, 0.0224, 0.0195, 0.0172, 0.0149, 0.0105, 0.0100])
    labels: tensor([7, 7, 8, 7, 7, 7, 3, 3, 7, 7, 2, 7, 7, 7, 3, 3, 3])
) at 0x7f6eab3a5010>, <InstanceData(

    META INFORMATION

    DATA FIELDS
    bboxes: tensor([[369.5950, 115.1669, 468.6862, 177.1904],
                [ 86.2699,  80.9000, 178.1832, 235.4626],
                [292.3818,  82.4506, 362.3058, 187.8531],
                [291.6922, 129.1415, 362.9953, 204.3957],
                [ 85.1895, 143.4100, 175.9433, 263.3141],
                [401.8036,  73.3165, 453.6652, 162.2478],
                [486.6723, 111.2668, 500.0464, 159.8175],
                [182.4350,  80.1961, 287.0963, 203.1836],
                [196.6247, 137.8179, 285.7972, 230.6538],
                [199.1438,  80.4697, 247.7312, 132.4554],
                [488.5123,  72.8782, 499.7690, 167.5652]])
    scores: tensor([0.9512, 0.9497, 0.9429, 0.9277, 0.9141, 0.8652, 0.8564, 0.8516, 0.8091,
                0.2192, 0.0117])
    labels: tensor([7, 8, 8, 7, 7, 8, 7, 8, 7, 8, 8])
) at 0x7f6ea8788c50>, <InstanceData(

    META INFORMATION

    DATA FIELDS
    bboxes: tensor([[ 1.7243e+02,  1.7730e+02,  2.9671e+02,  4.6684e+02],
                [ 5.8155e+00,  2.0046e+02,  4.1645e+02,  4.7454e+02],
                [ 4.0024e+02,  2.3898e+02,  4.2242e+02,  3.0398e+02],
                [ 4.3841e+02,  2.1665e+02,  4.6628e+02,  3.0093e+02],
                [ 3.3773e+02,  1.7839e+02,  3.8805e+02,  3.1731e+02],
                [ 3.3694e+02,  1.7726e+02,  3.8806e+02,  2.5048e+02],
                [ 3.8216e-01, -6.0158e+00,  4.4962e+02,  4.8258e+02],
                [ 3.4070e-01,  5.6722e+01,  4.8634e+01,  2.1261e+02],
                [ 1.4704e+02, -2.3098e+00,  4.1898e+02,  4.7497e+02],
                [ 3.7034e+02,  2.0512e+02,  4.0466e+02,  3.2652e+02],
                [ 2.0313e-01,  1.0729e+02,  4.6965e+01,  2.0873e+02],
                [ 4.6216e+00, -1.0417e+01,  3.9264e+02,  3.5339e+02],
                [ 1.8937e+02, -7.5917e+00,  3.9305e+02,  4.5681e+02]])
    scores: tensor([0.9448, 0.9346, 0.8916, 0.8892, 0.6870, 0.1355, 0.1219, 0.0283, 0.0260,
                0.0194, 0.0193, 0.0135, 0.0111])
    labels: tensor([8, 7, 8, 8, 8, 8, 7, 3, 7, 8, 3, 7, 8])
) at 0x7f6eabd97ed0>, <InstanceData(

    META INFORMATION

    DATA FIELDS
    bboxes: tensor([[187.4893,  94.3077, 351.1826, 317.8810],
                [254.4585,  56.5442, 416.2447, 288.1173],
                [191.8931, 154.2749, 362.4038, 327.0023],
                [274.1012, 165.7805, 426.6801, 294.4188],
                [201.7774, 139.4754, 426.3476, 326.9692],
                [304.9045, 107.7410, 416.9705, 268.1470]])
    scores: tensor([0.8774, 0.8174, 0.7881, 0.7192, 0.0555, 0.0156])
    labels: tensor([8, 8, 7, 7, 7, 8])
) at 0x7f6eabe010d0>, <InstanceData(

    META INFORMATION

    DATA FIELDS
    bboxes: tensor([[ 51.3628,  63.8355, 425.9809, 348.2739],
                [372.5372, 121.6008, 500.1191, 368.2430],
                [274.9606, 118.1414, 496.9145, 370.1398],
                [ 56.2354,  48.8488, 345.7178, 210.9169],
                [387.1140, 191.1213, 501.1673, 367.0818],
                [ 65.6768,  43.2195, 273.7763, 193.6946],
                [339.5045,   2.2160, 496.4330, 371.0262],
                [447.2321,  98.4732, 499.6429, 369.8862],
                [279.6960, -14.1533, 496.0853, 372.3564],
                [150.9262, 128.5654, 237.3551, 250.9268],
                [ 30.9630,  31.9545, 444.8183, 250.4673],
                [ 16.3388,  76.7248, 339.9112, 372.4939],
                [397.5184, 160.0190, 499.3566, 335.2935],
                [465.1181,  -2.9264, 499.7256, 356.6373],
                [461.2032,   1.5593, 498.9531, 364.6516]])
    scores: tensor([0.9351, 0.0746, 0.0447, 0.0347, 0.0301, 0.0246, 0.0213, 0.0179, 0.0160,
                0.0123, 0.0121, 0.0110, 0.0104, 0.0103, 0.0102])
    labels: tensor([7, 7, 7, 7, 7, 7, 7, 7, 8, 7, 7, 8, 7, 8, 7])
) at 0x7f6eac935a50>, <InstanceData(

    META INFORMATION

    DATA FIELDS
    bboxes: tensor([[ 1.4176e+02,  1.0473e+02,  4.6723e+02,  3.2496e+02],
                [ 2.5648e+02,  4.1302e+01,  4.0407e+02,  2.6768e+02],
                [ 1.7256e+02,  1.1143e+02,  2.3408e+02,  1.6396e+02],
                [ 1.7252e+02,  1.1005e+02,  2.3763e+02,  2.0206e+02],
                [ 3.9451e+00, -2.6713e+00,  4.9254e+02,  5.9507e+01],
                [ 1.7306e+02,  1.1060e+02,  2.0546e+02,  1.5678e+02],
                [ 1.7304e+02,  1.0978e+02,  2.7852e+02,  2.0545e+02],
                [ 3.2438e+02, -5.6137e-02,  4.4046e+02,  2.3921e+01],
                [ 3.3324e+02, -3.6887e-01,  4.7770e+02,  2.4612e+01],
                [ 2.4106e+02, -6.8224e-01,  5.0464e+02,  6.2352e+01],
                [ 3.2332e+02,  2.5612e-01,  4.2942e+02,  2.4280e+01]])
    scores: tensor([0.9521, 0.9111, 0.3076, 0.0841, 0.0478, 0.0417, 0.0184, 0.0174, 0.0169,
                0.0131, 0.0106])
    labels: tensor([7, 8, 8, 8, 7, 8, 8, 8, 7, 7, 7])
) at 0x7f6eab378450>, <InstanceData(

    META INFORMATION

    DATA FIELDS
    bboxes: tensor([[190.0638, 156.2086, 476.7330, 373.8695],
                [279.6879, 157.0183, 407.4215, 305.4817],
                [ -3.8097, 154.3061, 500.2940, 382.4127],
                [369.1621, 277.8802, 479.2754, 375.2448],
                [189.7010, 158.6341, 325.1427, 321.0535]])
    scores: tensor([0.9575, 0.9111, 0.0158, 0.0128, 0.0109])
    labels: tensor([7, 8, 7, 8, 7])
) at 0x7f6eabe24ed0>, <InstanceData(

    META INFORMATION

    DATA FIELDS
    bboxes: tensor([[ 1.0298e+02,  1.1576e+02,  4.3101e+02,  3.1588e+02],
                [ 2.0767e+02,  7.8989e+01,  3.6265e+02,  2.8918e+02],
                [ 4.7691e+02,  2.2197e+02,  4.9965e+02,  3.6671e+02],
                [ 4.7026e+02,  1.1819e+02,  5.0083e+02,  3.6970e+02],
                [ 3.5584e+02, -4.4198e-01,  5.0197e+02,  7.7395e+01],
                [ 2.2170e+02, -1.7525e-01,  5.0173e+02,  6.6337e+01],
                [ 4.7701e+02,  2.5071e+02,  4.9956e+02,  3.6726e+02],
                [ 3.6216e+02,  1.0261e-02,  5.0190e+02,  4.8256e+01],
                [ 3.5350e+02, -4.6781e-02,  5.0197e+02,  4.8435e+01]])
    scores: tensor([0.9590, 0.9458, 0.1489, 0.0877, 0.0444, 0.0346, 0.0212, 0.0177, 0.0128])
    labels: tensor([7, 8, 7, 7, 7, 7, 3, 7, 8])
) at 0x7f6eabe225d0>, <InstanceData(

    META INFORMATION

    DATA FIELDS
    bboxes: tensor([[ 7.5044e+01,  2.6525e+02,  4.5113e+02,  4.6273e+02],
                [ 4.6762e-01,  2.5770e+02,  3.2638e+01,  3.7337e+02],
                [ 4.6972e+02,  2.5928e+00,  4.9981e+02,  9.7734e+01],
                [ 4.3102e+01,  2.4062e+02,  1.8014e+02,  3.5880e+02],
                [ 9.3057e+01,  2.6306e+02,  2.0733e+02,  3.5746e+02],
                [-1.4960e+00,  6.0879e+01,  1.8577e+02,  4.1155e+02],
                [ 9.4234e+01,  2.3261e+02,  1.8194e+02,  3.5743e+02],
                [ 7.0111e-02,  2.8773e+02,  1.0501e+01,  3.7304e+02]])
    scores: tensor([0.9292, 0.1604, 0.0288, 0.0184, 0.0175, 0.0131, 0.0130, 0.0103])
    labels: tensor([7, 3, 7, 3, 3, 3, 3, 3])
) at 0x7f6eabe260d0>, <InstanceData(

    META INFORMATION

    DATA FIELDS
    bboxes: tensor([[ 9.4630e+01,  3.8269e+01,  3.3876e+02,  4.9103e+02],
                [ 1.8375e+02,  1.0650e+01,  3.3593e+02,  3.4384e+02],
                [ 6.8871e-03,  3.3930e+02,  1.9775e+02,  4.8805e+02],
                [ 1.7638e+02,  3.7974e+00,  3.3354e+02,  3.1437e+02],
                [-4.8194e+00, -9.8881e+00,  3.5388e+02,  4.9817e+02],
                [ 8.5438e+01,  1.9861e+02,  3.3390e+02,  5.0022e+02],
                [ 5.7304e+00, -1.7797e+00,  3.3747e+02,  3.0940e+02],
                [-7.6565e+00, -2.2549e+00,  1.7555e+02,  4.9210e+02],
                [ 8.7763e-01,  3.3927e+02,  2.0410e+02,  4.3182e+02],
                [-2.5258e+00,  2.0853e+01,  5.9140e+01,  4.9165e+02],
                [ 1.1773e+02, -5.7279e+00,  3.3402e+02,  3.7331e+02]])
    scores: tensor([0.9521, 0.0839, 0.0359, 0.0267, 0.0215, 0.0212, 0.0158, 0.0145, 0.0133,
                0.0117, 0.0105])
    labels: tensor([7, 8, 3, 3, 7, 7, 3, 7, 3, 8, 8])
) at 0x7f6ea8788410>, <InstanceData(

    META INFORMATION

    DATA FIELDS
    bboxes: tensor([[ 83.9244,  81.2432, 267.8230, 410.5536],
                [  4.2655,  89.7942,  33.2614, 105.1277],
                [ 58.1326,  89.0264,  76.0663, 103.8447],
                [154.5910,  92.3937, 160.8495, 104.8719],
                [150.2587,  92.1892, 156.0075, 104.6858],
                [160.9006,  89.5535, 176.2070,  97.7512],
                [151.1016,  92.2227, 159.6542, 104.4570],
                [151.8348,  91.2136, 159.1161, 105.2707],
                [ 78.4743,  91.3791,  95.2522, 100.4178],
                [204.2995,  94.0529, 218.5001, 102.5291],
                [215.7458,  90.3772, 229.3065,  97.5134],
                [201.5837,  92.3821, 219.6543, 101.3679],
                [140.4630,  91.2711, 153.1153,  99.6469],
                [203.9678,  93.6486, 218.4414, 102.2499],
                [110.5402,  80.9819, 268.1446, 320.9713]])
    scores: tensor([0.9336, 0.8164, 0.7749, 0.2371, 0.2057, 0.0704, 0.0597, 0.0572, 0.0379,
                0.0267, 0.0173, 0.0146, 0.0123, 0.0115, 0.0106])
    labels: tensor([7, 3, 3, 8, 8, 3, 3, 8, 3, 3, 3, 3, 3, 7, 8])
) at 0x7f6ea87a19d0>, <InstanceData(

    META INFORMATION

    DATA FIELDS
    bboxes: tensor([[ 4.2394e-01,  1.3914e+02,  7.3062e+01,  4.0226e+02],
                [ 9.6425e+01,  1.7062e+02,  1.8951e+02,  3.5359e+02],
                [ 8.5373e+01,  2.5419e+02,  1.9744e+02,  3.9503e+02],
                [ 7.7716e+01,  2.0436e+02,  3.7697e+02,  4.4017e+02],
                [-2.5264e-01,  1.3978e+02,  4.7665e+01,  2.9968e+02],
                [-1.0571e+01,  6.3291e+01,  1.9631e+02,  4.0976e+02],
                [ 8.0925e-02,  1.3613e+02,  6.4372e+01,  2.6387e+02],
                [ 3.6438e+02,  3.6075e+02,  3.7468e+02,  3.9394e+02],
                [ 1.4174e+02,  2.0681e+02,  3.7389e+02,  4.3851e+02],
                [-2.5013e-01,  1.4433e+02,  4.2535e+01,  3.6895e+02]])
    scores: tensor([0.9385, 0.9336, 0.8774, 0.0490, 0.0265, 0.0205, 0.0164, 0.0141, 0.0131,
                0.0113])
    labels: tensor([8, 8, 7, 7, 8, 7, 8, 3, 2, 8])
) at 0x7f6eac8a9810>, <InstanceData(

    META INFORMATION

    DATA FIELDS
    bboxes: tensor([[ 42.1876,  47.1714, 224.5100, 209.2739],
                [ 66.1101, 176.2430, 313.3235, 450.3195],
                [ 74.2302, 177.9138, 232.3256, 352.1643]])
    scores: tensor([0.9512, 0.9360, 0.0446])
    labels: tensor([8, 7, 7])
) at 0x7f6eac935290>, <InstanceData(

    META INFORMATION

    DATA FIELDS
    bboxes: tensor([[174.2735, 186.1996, 305.8047, 275.8782],
                [ 57.4156, 185.5003, 141.0219, 299.6423],
                [344.5625, 131.4622, 496.8437, 332.1793],
                [332.0187,  32.3267, 499.2314, 354.8882],
                [330.3344,  41.8920, 499.3530, 346.6912],
                [367.0510, 120.3737, 499.3552, 292.0561],
                [ 24.5257,  95.9487, 146.8611, 307.4897],
                [ 62.0639, 177.8405, 136.8619, 277.5915],
                [ 25.2252,  97.1456, 275.7514, 302.5790]])
    scores: tensor([0.9253, 0.8945, 0.5410, 0.3525, 0.2566, 0.0337, 0.0172, 0.0127, 0.0104])
    labels: tensor([7, 7, 3, 7, 3, 3, 7, 8, 7])
) at 0x7f6eabd974d0>, <InstanceData(

    META INFORMATION

    DATA FIELDS
    bboxes: tensor([[ 1.9429e+01,  2.8555e+01,  4.4893e+02,  2.9487e+02],
                [ 4.6321e+02,  3.4348e-01,  4.9851e+02,  8.8183e+01],
                [ 4.2772e+02,  3.2632e-01,  4.6291e+02,  8.0383e+01],
                [ 4.3255e+02,  2.4381e+02,  5.0104e+02,  3.3425e+02],
                [ 4.3865e+02,  2.4424e+02,  4.9964e+02,  3.3225e+02],
                [ 4.4384e+02,  2.9956e+02,  4.9991e+02,  3.3322e+02],
                [ 4.9367e+02,  1.9524e+00,  5.0008e+02,  9.1020e+01],
                [ 4.5033e+02,  2.4709e+02,  4.8405e+02,  3.3175e+02],
                [ 1.9632e+02,  2.9031e+01,  4.3962e+02,  2.8365e+02],
                [ 4.9223e+02,  6.4210e-01,  4.9996e+02,  6.3554e+01],
                [ 1.3515e+01,  1.2680e+02,  4.6539e+02,  2.9492e+02],
                [ 4.4789e+02,  3.0231e+02,  4.8648e+02,  3.3282e+02],
                [ 4.4799e+02,  2.9623e+02,  4.8561e+02,  3.3303e+02],
                [ 2.5429e+02,  1.5627e+02,  3.5977e+02,  2.6389e+02],
                [ 3.1993e+02,  2.1065e-01,  3.5507e+02,  2.5854e+01],
                [ 4.6168e+02,  3.0735e+02,  5.0004e+02,  3.3286e+02],
                [ 1.8844e+02,  1.5666e+02,  3.6235e+02,  2.6662e+02],
                [ 1.7483e+01,  1.2708e+02,  4.5205e+02,  2.9504e+02],
                [ 4.7965e+02, -1.0487e+00,  5.0004e+02,  8.6448e+01]])
    scores: tensor([0.9521, 0.9380, 0.8848, 0.2323, 0.1110, 0.0806, 0.0511, 0.0490, 0.0313,
                0.0271, 0.0196, 0.0195, 0.0139, 0.0133, 0.0120, 0.0119, 0.0119, 0.0106,
                0.0101])
    labels: tensor([7, 8, 8, 7, 8, 7, 8, 8, 7, 8, 7, 7, 8, 7, 8, 7, 7, 5, 8])
) at 0x7f6eac9361d0>, <InstanceData(

    META INFORMATION

    DATA FIELDS
    bboxes: tensor([[ 67.3527,  24.1280, 436.1629, 348.3329],
                [130.8438, 131.0230, 158.6093, 205.1098],
                [126.5263, 124.8587, 161.7550, 252.0944],
                [143.2430, 176.5141, 444.2571, 350.0485],
                [130.5925, 126.6008, 156.3215, 185.8992],
                [ 63.6166, 117.6950, 423.8834, 360.0394]])
    scores: tensor([0.9556, 0.0600, 0.0183, 0.0163, 0.0145, 0.0115])
    labels: tensor([7, 8, 8, 7, 8, 5])
) at 0x7f6ea82ae190>, <InstanceData(

    META INFORMATION

    DATA FIELDS
    bboxes: tensor([[203.4420, 121.2869, 455.9330, 292.2272],
                [ 79.1059, 126.7023, 318.1597, 264.7290],
                [418.8734, 173.6405, 456.1266, 210.9511],
                [ 62.1651, 123.2019, 486.6631, 279.7594]])
    scores: tensor([0.9546, 0.8740, 0.0169, 0.0145])
    labels: tensor([7, 7, 5, 7])
) at 0x7f6fc8cf5fd0>, <InstanceData(

    META INFORMATION

    DATA FIELDS
    bboxes: tensor([[ 6.7262e+01,  9.5022e+01,  4.0969e+02,  3.3037e+02],
                [ 1.7492e+02,  4.3459e+01,  3.3172e+02,  2.9209e+02],
                [ 4.8216e+02, -7.6169e-02,  4.9987e+02,  2.2830e+01],
                [ 4.2217e+02,  6.5388e-01,  5.0048e+02,  2.8741e+01],
                [ 4.3687e+02,  7.9100e-02,  4.9829e+02,  2.8754e+01],
                [ 2.8673e+01,  4.3755e+01,  4.9672e+02,  3.3437e+02],
                [ 1.3050e+02,  6.5928e-01,  5.0075e+02,  3.0344e+02],
                [ 4.7718e+02,  1.7190e-02,  5.0017e+02,  2.7400e+01],
                [ 2.9880e+02, -6.5401e-01,  4.6605e+02,  1.9795e+01],
                [ 3.6354e+02, -2.0199e-01,  4.6380e+02,  1.7634e+01]])
    scores: tensor([0.9619, 0.9321, 0.1240, 0.0707, 0.0252, 0.0239, 0.0155, 0.0145, 0.0127,
                0.0108])
    labels: tensor([7, 8, 3, 7, 3, 7, 8, 3, 7, 7])
) at 0x7f6ea87a2390>, <InstanceData(

    META INFORMATION

    DATA FIELDS
    bboxes: tensor([[ 2.2677e+01,  3.7042e+01,  4.1990e+02,  3.7350e+02],
                [ 3.0712e+02,  1.4007e+01,  5.0147e+02,  3.7427e+02],
                [ 9.2354e+01,  1.3782e+00,  3.1780e+02,  8.8807e+01],
                [ 1.8119e+02,  1.5311e+01,  5.0162e+02,  3.7277e+02],
                [ 2.6469e+01,  1.2096e+00,  4.4931e+02,  3.6715e+02],
                [ 3.7200e+02,  1.4806e+00,  4.9909e+02,  3.7391e+02],
                [ 2.8920e+01,  1.3390e+00,  4.2460e+02,  1.1683e+02],
                [-2.3795e+00,  4.3836e-01,  3.2757e+02,  9.2872e+01],
                [ 2.1930e+02,  5.3554e-01,  3.1820e+02,  8.6964e+01],
                [ 1.1492e+02,  2.4964e+01,  4.9992e+02,  3.7211e+02],
                [ 3.8530e+01, -1.5835e+00,  3.6147e+02,  2.9651e+02],
                [ 3.5818e+01,  1.0741e+02,  3.4699e+02,  3.7618e+02],
                [ 2.5404e+02,  1.6672e-01,  3.6588e+02,  7.3661e+01],
                [ 2.7592e-01,  1.7647e+00,  3.2511e+02,  1.5195e+02],
                [ 1.7267e+01,  1.2518e+02,  4.8898e+02,  3.7521e+02],
                [ 3.0736e+02, -1.0844e-01,  3.6998e+02,  6.9884e+01],
                [ 3.8149e+02,  1.4737e+00,  5.0055e+02,  1.9970e+02],
                [-1.4627e+00,  1.6931e+00,  3.2978e+02,  2.0260e+02],
                [ 2.5322e+02,  4.6732e-01,  3.2100e+02,  7.5558e+01]])
    scores: tensor([0.8833, 0.7148, 0.2402, 0.2240, 0.0759, 0.0525, 0.0415, 0.0409, 0.0380,
                0.0326, 0.0307, 0.0274, 0.0202, 0.0202, 0.0180, 0.0145, 0.0126, 0.0117,
                0.0103])
    labels: tensor([7, 8, 8, 8, 8, 8, 7, 8, 8, 7, 8, 7, 8, 7, 7, 8, 8, 8, 8])
) at 0x7f6fc8cf5f90>, <InstanceData(

    META INFORMATION

    DATA FIELDS
    bboxes: tensor([[ 28.2147,  95.1965, 442.8791, 355.1942],
                [118.5745,  25.3001, 226.3474, 227.4343],
                [ 17.1296,   1.3847,  61.2395,  59.9922],
                [293.4143,  22.6264, 314.0076,  53.6919],
                [246.9791, 158.2423, 338.1772, 197.8124]])
    scores: tensor([0.9561, 0.9531, 0.0471, 0.0187, 0.0106])
    labels: tensor([7, 8, 9, 8, 7])
) at 0x7f6ea87a1450>, <InstanceData(

    META INFORMATION

    DATA FIELDS
    bboxes: tensor([[107.6121, 222.6573, 285.5639, 388.2802],
                [103.5395, 186.8555, 256.6441, 336.1913],
                [  2.9812,   5.7032, 325.7717, 446.2499],
                [260.1371, 131.3580, 327.0890, 212.3920],
                [ 10.2574, 172.0762, 319.4716, 406.0488],
                [145.2424, 218.5026, 257.6946, 333.4505],
                [163.5020, 244.3372, 258.5668, 331.4440],
                [183.5779, 111.1966, 277.5352, 210.2878],
                [178.2922,  81.8450, 276.1833, 208.5847],
                [196.2923, 253.9941, 255.8405, 328.4278],
                [ 77.0447,   3.9104, 327.4541, 369.1365],
                [181.7765, 259.5471, 263.3284, 335.3748],
                [  8.6866, 244.1530, 145.9288, 387.4876],
                [301.4442,  21.2958, 313.5034,  46.4288],
                [105.7764, 186.8969, 206.5779, 313.8843],
                [ 94.0984,   2.4837, 325.2373, 375.6413],
                [180.1312, 111.9816, 330.5681, 228.0575],
                [  7.1989, 208.9951, 224.3338, 389.4424],
                [105.6959, 216.9335, 261.5157, 342.4415],
                [  6.8825, 274.1206, 300.7866, 487.9888],
                [ 98.0376,   3.8735, 325.5930, 239.6812],
                [ 93.6460,   6.7383, 325.6896, 152.4414],
                [ 98.2623,   3.7374, 291.0093,  89.4755],
                [105.2998, 186.4017, 199.4408, 276.0983],
                [  9.3683, 240.4074, 294.7867, 488.4989],
                [187.5747, 283.7428, 286.8134, 377.1947],
                [219.3730, 120.8627, 326.4662, 331.8717],
                [107.1435, 223.1085, 206.3822, 321.8134],
                [  5.3824,   8.4913, 319.4661, 437.9931],
                [165.9957,   8.0260, 328.3050, 357.2084],
                [220.7658, 138.5865, 327.0256, 337.9760],
                [ 10.0260, 250.3859, 103.9833, 383.2079],
                [183.1734, 101.3395, 328.6973, 287.9183],
                [133.5665,  91.0965, 324.8135, 376.0910]])
    scores: tensor([0.8208, 0.7759, 0.6655, 0.3789, 0.2856, 0.2137, 0.1160, 0.1092, 0.1036,
                0.0629, 0.0573, 0.0456, 0.0415, 0.0404, 0.0381, 0.0374, 0.0256, 0.0254,
                0.0243, 0.0241, 0.0232, 0.0227, 0.0189, 0.0164, 0.0164, 0.0152, 0.0148,
                0.0145, 0.0129, 0.0125, 0.0118, 0.0106, 0.0105, 0.0102])
    labels: tensor([7, 8, 7, 7, 7, 8, 8, 7, 8, 8, 7, 7, 7, 8, 8, 8, 7, 7, 7, 7, 8, 7, 8, 8,
                8, 7, 7, 7, 8, 8, 3, 7, 7, 7])
) at 0x7f6fc8cf5d10>, <InstanceData(

    META INFORMATION

    DATA FIELDS
    bboxes: tensor([[141.7842, 121.3854, 410.5596, 316.1146],
                [162.0757,  35.4768, 323.8618, 290.4998]])
    scores: tensor([0.9624, 0.9463])
    labels: tensor([7, 8])
) at 0x7f6eac936950>, <InstanceData(

    META INFORMATION

    DATA FIELDS
    bboxes: tensor([[2.9167e+01, 9.7510e+01, 4.5442e+01, 1.4137e+02],
                [2.0136e+02, 1.3167e+02, 3.1973e+02, 2.7076e+02],
                [1.9974e+02, 5.8775e+01, 3.0964e+02, 2.3807e+02],
                [3.8088e+02, 1.2098e+02, 4.0897e+02, 1.4230e+02],
                [4.5882e+02, 1.0819e+02, 4.7946e+02, 1.5977e+02],
                [1.3112e+02, 1.1186e+02, 1.5306e+02, 1.4010e+02],
                [1.5186e+02, 1.1247e+02, 1.6787e+02, 1.4046e+02],
                [3.1250e+02, 1.1843e+02, 3.2226e+02, 1.3899e+02],
                [3.2613e+02, 1.0327e+02, 3.9614e+02, 1.2722e+02],
                [3.0808e+02, 1.2322e+02, 3.2942e+02, 1.4065e+02],
                [3.2508e+02, 1.2069e+02, 3.5266e+02, 1.4083e+02],
                [6.4860e+01, 1.1756e+02, 9.9788e+01, 1.4005e+02],
                [1.6611e+02, 1.1354e+02, 1.8233e+02, 1.4134e+02],
                [1.9305e+02, 1.1452e+02, 2.1359e+02, 1.3763e+02],
                [7.3996e+01, 9.6701e+01, 8.8211e+01, 1.3691e+02],
                [8.7585e+01, 1.1616e+02, 1.1671e+02, 1.3931e+02],
                [4.3005e+02, 1.1471e+02, 4.4808e+02, 1.2905e+02],
                [6.4193e+01, 9.8755e+01, 7.6335e+01, 1.3720e+02],
                [1.8245e+02, 1.1660e+02, 1.9880e+02, 1.3829e+02],
                [4.2007e+02, 1.1165e+02, 4.2681e+02, 1.2938e+02],
                [4.7867e+02, 1.2238e+02, 4.9945e+02, 1.4227e+02],
                [4.7772e+02, 1.2339e+02, 4.9024e+02, 1.4203e+02],
                [1.2232e+02, 1.1164e+02, 1.3881e+02, 1.4012e+02],
                [4.0659e+02, 1.1793e+02, 4.2076e+02, 1.4086e+02],
                [3.9408e+02, 1.1447e+02, 4.0748e+02, 1.3924e+02],
                [4.7931e+02, 1.1428e+02, 4.9178e+02, 1.4178e+02],
                [4.3269e+02, 1.2006e+02, 4.5402e+02, 1.3932e+02],
                [2.7019e-01, 4.4724e+01, 8.3226e+01, 1.3756e+02],
                [4.2965e+02, 1.1466e+02, 4.4770e+02, 1.2911e+02],
                [1.1279e+02, 1.1818e+02, 1.2784e+02, 1.4060e+02],
                [2.3148e+02, 1.2040e+02, 2.4274e+02, 1.3956e+02],
                [1.1408e+02, 1.1367e+02, 1.3592e+02, 1.4161e+02],
                [3.8899e+02, 1.1440e+02, 4.0554e+02, 1.3971e+02],
                [4.3035e+02, 1.1317e+02, 4.5793e+02, 1.2961e+02],
                [4.3070e+02, 1.1619e+02, 4.4977e+02, 1.3558e+02],
                [4.8599e+02, 1.1731e+02, 4.9994e+02, 1.4206e+02],
                [3.1023e+02, 1.1992e+02, 3.2493e+02, 1.4063e+02],
                [1.7918e+02, 1.1745e+02, 1.9211e+02, 1.3880e+02],
                [2.0136e+02, 5.9152e+01, 2.9591e+02, 1.8071e+02],
                [3.8817e+02, 1.1767e+02, 4.1026e+02, 1.4092e+02],
                [4.4471e+02, 1.1742e+02, 4.5998e+02, 1.3980e+02],
                [2.0212e+02, 1.0178e+02, 3.0218e+02, 2.2942e+02],
                [4.8680e+02, 1.1551e+02, 4.9992e+02, 1.4016e+02],
                [4.8964e+02, 1.1386e+02, 5.0021e+02, 1.2346e+02],
                [2.3174e+02, 1.2203e+02, 2.4404e+02, 1.4027e+02],
                [1.5368e+02, 1.1616e+02, 1.7034e+02, 1.4204e+02],
                [2.0190e+02, 1.2399e+02, 2.9888e+02, 2.3531e+02],
                [3.1020e+02, 1.1706e+02, 3.2183e+02, 1.3314e+02],
                [6.5246e+01, 1.1197e+02, 8.1141e+01, 1.3901e+02],
                [4.4829e+02, 1.1482e+02, 4.6108e+02, 1.4006e+02],
                [3.2350e+02, 1.0309e+02, 4.0501e+02, 1.2721e+02],
                [1.2316e+02, 1.1063e+02, 1.3563e+02, 1.3606e+02],
                [2.9570e+02, 1.0867e+02, 3.2344e+02, 1.2045e+02],
                [2.0813e+02, 1.1283e+02, 2.2312e+02, 1.3737e+02],
                [1.2781e+02, 1.1656e+02, 1.4661e+02, 1.4106e+02],
                [4.0661e+02, 1.1373e+02, 4.1918e+02, 1.3882e+02],
                [2.9113e+02, 1.0101e+02, 3.3934e+02, 1.1933e+02],
                [3.2903e+02, 1.2226e+02, 3.4753e+02, 1.4141e+02],
                [4.0648e+02, 1.1270e+02, 4.1539e+02, 1.3731e+02],
                [3.2796e+02, 1.1441e+02, 3.4314e+02, 1.3892e+02],
                [2.1497e+02, 7.1558e+01, 2.9050e+02, 1.5600e+02],
                [4.1444e+02, 1.1236e+02, 4.2619e+02, 1.2984e+02],
                [4.9011e+02, 1.0855e+02, 4.9973e+02, 1.2214e+02],
                [4.4282e+02, 1.1186e+02, 4.6031e+02, 1.3307e+02],
                [4.4732e+02, 1.1208e+02, 4.5893e+02, 1.2133e+02],
                [4.7218e+02, 1.1803e+02, 4.9970e+02, 1.4934e+02],
                [2.2328e+02, 1.0452e+02, 2.4312e+02, 1.3983e+02],
                [1.2407e+02, 1.1132e+02, 1.3628e+02, 1.3986e+02],
                [2.4888e+02, 1.0528e+02, 2.6714e+02, 1.2345e+02],
                [2.2206e+02, 6.9534e+01, 2.5645e+02, 1.3949e+02],
                [2.1643e+02, 9.7828e+01, 5.0310e+02, 3.8150e+02]])
    scores: tensor([0.8877, 0.8862, 0.8774, 0.8477, 0.7700, 0.7676, 0.7368, 0.7251, 0.7095,
                0.6724, 0.6685, 0.6572, 0.6543, 0.6411, 0.6123, 0.6025, 0.5327, 0.4507,
                0.4333, 0.4229, 0.4221, 0.4185, 0.3948, 0.3186, 0.3052, 0.2803, 0.2603,
                0.2329, 0.2141, 0.1658, 0.1628, 0.1547, 0.1514, 0.1379, 0.1345, 0.1204,
                0.1166, 0.1058, 0.1054, 0.0854, 0.0795, 0.0689, 0.0677, 0.0657, 0.0620,
                0.0586, 0.0453, 0.0449, 0.0446, 0.0417, 0.0399, 0.0369, 0.0355, 0.0349,
                0.0280, 0.0275, 0.0267, 0.0263, 0.0260, 0.0248, 0.0242, 0.0226, 0.0222,
                0.0167, 0.0141, 0.0136, 0.0126, 0.0109, 0.0107, 0.0102, 0.0101])
    labels: tensor([8, 7, 8, 7, 8, 7, 7, 8, 3, 7, 7, 7, 7, 7, 8, 7, 3, 8, 7, 8, 7, 7, 7, 7,
                8, 8, 7, 2, 7, 7, 7, 7, 8, 3, 7, 7, 7, 7, 8, 7, 7, 8, 3, 3, 8, 7, 7, 8,
                7, 7, 2, 7, 3, 7, 7, 8, 3, 7, 8, 8, 8, 8, 8, 3, 3, 7, 7, 8, 8, 8, 3])
) at 0x7f6eac8d7250>, <InstanceData(

    META INFORMATION

    DATA FIELDS
    bboxes: tensor([[105.5714, 161.1331, 385.0536, 372.5418],
                [172.4518,  65.6327, 322.0795, 284.2252]])
    scores: tensor([0.9595, 0.8433])
    labels: tensor([7, 8])
) at 0x7f6eac935110>, <InstanceData(

    META INFORMATION

    DATA FIELDS
    bboxes: tensor([[ 3.3193e+01,  3.6645e+01,  4.5274e+02,  3.0281e+02],
                [ 2.9582e+02,  1.0286e+01,  3.6824e+02,  1.2819e+02],
                [ 4.0209e+02,  2.5292e+01,  4.9400e+02,  2.2197e+02],
                [ 5.3843e-01,  1.3934e+01,  5.5907e+01,  1.9798e+02],
                [ 3.4993e+02,  2.8327e+01,  3.7663e+02,  9.9700e+01],
                [ 3.3636e+02,  1.2873e+00,  3.9880e+02,  2.4640e+01],
                [ 3.7746e+02,  4.1489e+01,  3.9675e+02,  9.6011e+01],
                [ 4.1153e+02,  1.7465e+01,  4.4628e+02,  1.2111e+02],
                [ 3.8733e+02,  4.8811e+01,  4.1657e+02,  9.3572e+01],
                [ 4.8272e+02,  3.9872e+01,  5.0009e+02,  1.7321e+02],
                [ 4.6932e+02,  3.4692e+01,  4.9943e+02,  1.7254e+02],
                [ 4.0858e+02,  1.6441e+01,  4.4689e+02,  1.8239e+02],
                [ 3.8124e+02,  6.7645e+01,  4.1447e+02,  9.7784e+01],
                [ 3.1282e+02,  2.7435e+01,  5.0046e+02,  1.3331e+02],
                [ 3.8187e+02,  6.0095e+01,  4.1345e+02,  1.2741e+02],
                [ 4.8531e+02,  7.7922e+01,  4.9985e+02,  1.7012e+02],
                [ 2.9882e+02,  6.4717e+01,  4.3165e+02,  1.3079e+02],
                [ 2.9023e+01,  1.3953e+02,  4.6785e+02,  3.1477e+02],
                [ 4.6990e+02,  2.7266e+01,  5.0041e+02,  1.9383e+02],
                [ 4.7019e+02,  3.5446e+01,  4.9856e+02,  8.8187e+01],
                [ 4.2405e+02,  2.6574e+01,  5.0173e+02,  1.6835e+02],
                [ 4.3357e+02,  2.9882e+01,  4.7268e+02,  1.2481e+02],
                [ 2.9806e+02,  8.1847e+01,  3.7538e+02,  1.2870e+02],
                [ 3.8218e+02,  6.3257e+01,  4.1157e+02,  1.3381e+02],
                [ 4.5939e+02,  2.7896e+01,  4.9998e+02,  1.1742e+02],
                [ 3.7924e+02,  4.3251e+01,  4.0747e+02,  9.7667e+01],
                [ 2.9592e+02,  5.5141e+01,  3.7205e+02,  1.2943e+02],
                [ 3.8884e+02,  4.8932e+01,  4.1585e+02,  7.6752e+01],
                [ 3.9232e+02,  3.6931e+00,  4.9986e+02,  1.1974e+02],
                [ 3.2494e+01,  9.5904e+01,  3.2942e+02,  3.2988e+02],
                [ 4.1319e+02,  2.2822e+01,  4.4306e+02,  9.8076e+01],
                [ 3.4861e+02, -1.3695e-01,  4.6155e+02,  2.4820e+01],
                [ 3.1542e+01,  8.6452e+01,  3.0615e+02,  2.8894e+02],
                [ 4.8596e+02,  5.5080e+01,  4.9998e+02,  2.5215e+02],
                [ 4.8862e+02,  3.8495e+01,  4.9967e+02,  1.5369e+02],
                [ 3.7919e+02,  4.2307e+01,  3.9698e+02,  7.1462e+01],
                [ 4.8527e+02,  8.0364e+01,  4.9989e+02,  1.7257e+02],
                [ 4.4580e+02,  2.9578e+01,  4.9951e+02,  1.6085e+02],
                [ 3.2478e+01,  1.0653e+02,  4.5698e+02,  3.2082e+02],
                [ 4.9229e+02,  4.0129e+01,  4.9990e+02,  9.6492e+01],
                [ 3.3570e+02,  8.8397e+01,  4.3813e+02,  1.3211e+02],
                [ 3.2719e+02,  2.4958e+00,  4.9937e+02,  1.2270e+02],
                [ 4.9273e+02,  2.3355e+01,  5.0024e+02,  1.5389e+02],
                [ 3.5717e+02,  1.5272e-01,  4.2017e+02,  2.3602e+01],
                [ 4.3235e+02,  4.2495e+01,  4.5437e+02,  1.0711e+02]])
    scores: tensor([0.9492, 0.9282, 0.9028, 0.8994, 0.8120, 0.7759, 0.7632, 0.7085, 0.6904,
                0.2520, 0.1516, 0.1471, 0.1083, 0.0917, 0.0880, 0.0878, 0.0634, 0.0632,
                0.0452, 0.0429, 0.0394, 0.0385, 0.0354, 0.0353, 0.0307, 0.0303, 0.0301,
                0.0217, 0.0199, 0.0178, 0.0173, 0.0161, 0.0150, 0.0146, 0.0143, 0.0131,
                0.0130, 0.0127, 0.0124, 0.0122, 0.0121, 0.0115, 0.0112, 0.0111, 0.0102])
    labels: tensor([7, 8, 8, 8, 8, 7, 8, 8, 8, 8, 8, 8, 7, 7, 7, 8, 7, 7, 7, 8, 7, 8, 7, 8,
                8, 8, 7, 8, 8, 8, 8, 7, 7, 8, 8, 8, 7, 8, 5, 8, 7, 8, 8, 7, 8])
) at 0x7f6eac90f910>, <InstanceData(

    META INFORMATION

    DATA FIELDS
    bboxes: tensor([[-8.8537e-01,  2.5943e+01,  2.2901e+02,  2.3321e+02],
                [-3.9432e-01,  2.4241e+00,  1.7764e+02,  1.9756e+02],
                [ 1.7359e+02,  1.7634e+00,  4.9907e+02,  1.6287e+02],
                [ 1.6556e+02,  3.4396e+00,  4.9616e+02,  1.6158e+02],
                [ 6.3987e+01,  4.3885e+00,  1.8445e+02,  1.5966e+02]])
    scores: tensor([0.9409, 0.8770, 0.3721, 0.2307, 0.0948])
    labels: tensor([7, 8, 3, 7, 8])
) at 0x7f6eabe258d0>, <InstanceData(

    META INFORMATION

    DATA FIELDS
    bboxes: tensor([[ 3.7895e+02,  4.1991e+01,  4.9918e+02,  1.7930e+02],
                [ 3.1101e+02,  3.5166e+01,  3.9719e+02,  9.6573e+01],
                [ 1.1747e+02,  5.9787e+01,  2.0734e+02,  1.4178e+02],
                [ 8.6965e+01,  3.1939e+01,  1.0473e+02,  4.5405e+01],
                [ 2.0702e+02,  1.5591e+01,  3.9142e+02,  7.6938e+01],
                [ 1.7551e+01,  2.5087e+01,  3.5867e+01,  3.8390e+01],
                [ 6.6929e-02,  2.4374e+01,  1.8854e+01,  4.2179e+01],
                [ 1.1890e+02,  2.9259e+01,  1.3911e+02,  4.3300e+01],
                [ 1.2854e+02,  6.9622e+01,  4.4959e+02,  3.4210e+02],
                [ 2.0479e+02,  2.9726e+01,  2.1201e+02,  4.9473e+01],
                [-5.9384e-02,  2.8679e+01,  5.2657e+00,  4.6711e+01],
                [-4.6429e-02,  2.8496e+01,  1.1246e+01,  4.5918e+01],
                [ 9.9281e+01,  3.0093e+01,  1.3490e+02,  4.5152e+01],
                [ 1.2857e+02,  7.0877e+01,  4.5151e+02,  3.4123e+02],
                [ 1.2366e+02,  3.0635e+01,  1.4665e+02,  4.3681e+01],
                [ 1.7021e+02,  2.7580e+01,  1.7471e+02,  3.6971e+01],
                [ 1.6246e+01,  2.6205e+01,  2.8188e+01,  4.1568e+01],
                [ 1.3313e+02,  3.2020e+01,  1.5164e+02,  4.4347e+01],
                [ 1.7913e+02,  3.3306e+01,  1.9489e+02,  4.3158e+01],
                [ 2.0628e+02,  2.9066e+01,  2.1443e+02,  4.9352e+01],
                [ 1.9986e+02,  2.4428e+01,  2.0912e+02,  4.4761e+01],
                [-2.2386e+00, -1.4319e+00,  2.6864e+02,  3.4167e+02],
                [ 1.8194e+02,  3.3927e+01,  1.9403e+02,  4.3124e+01],
                [ 1.1809e+02,  6.6725e+01,  1.5046e+02,  1.4382e+02],
                [-5.1401e+00,  4.8028e+01,  2.6627e+02,  5.9416e+02],
                [ 6.6190e-01,  1.8252e+00,  4.9309e+02,  3.5169e+02],
                [ 1.9261e+02,  3.3259e+01,  2.0017e+02,  4.2864e+01],
                [ 3.5854e+01,  2.5058e+01,  4.9254e+01,  3.4268e+01],
                [-6.6665e+00,  1.0536e+00,  2.9026e+02,  3.5852e+02],
                [-4.5555e-01,  1.9579e+01,  1.4005e+01,  4.2823e+01],
                [ 2.1514e+02,  2.0342e+01,  2.7432e+02,  3.3515e+01],
                [ 2.0552e+02,  2.8192e+01,  2.1753e+02,  5.0372e+01],
                [-1.2922e+00,  3.2763e+00,  2.5071e+02,  3.9282e+02],
                [ 9.4567e+01,  2.9459e+01,  1.2262e+02,  4.5443e+01],
                [-3.2721e+00,  2.1793e+00,  1.7788e+02,  3.2829e+02],
                [ 1.3932e+02,  1.6868e+02,  4.5794e+02,  3.4225e+02],
                [ 1.7011e+02,  2.7326e+01,  1.7560e+02,  4.0057e+01]])
    scores: tensor([0.9595, 0.9395, 0.9302, 0.8193, 0.8037, 0.7153, 0.7109, 0.6982, 0.6807,
                0.3882, 0.3198, 0.2360, 0.2240, 0.2170, 0.2153, 0.1539, 0.1348, 0.0883,
                0.0670, 0.0592, 0.0547, 0.0338, 0.0329, 0.0323, 0.0308, 0.0305, 0.0302,
                0.0223, 0.0216, 0.0187, 0.0173, 0.0160, 0.0150, 0.0143, 0.0110, 0.0109,
                0.0102])
    labels: tensor([3, 7, 3, 3, 3, 3, 3, 3, 7, 8, 3, 3, 3, 3, 3, 8, 3, 3, 7, 8, 8, 3, 3, 3,
                8, 7, 7, 3, 7, 3, 3, 8, 8, 3, 3, 3, 8])
) at 0x7f6eac934f10>, <InstanceData(

    META INFORMATION

    DATA FIELDS
    bboxes: tensor([[ 7.5134e+00,  2.3324e+02,  3.9330e+02,  4.9528e+02],
                [ 1.9711e+02,  2.3290e+02,  3.0918e+02,  3.0421e+02],
                [ 5.2555e+00,  3.1241e+02,  3.0453e+02,  4.9462e+02],
                [-1.2620e-01,  3.5826e+02,  1.1345e+01,  4.0775e+02],
                [ 2.7551e-03,  3.2995e+02,  1.2382e+01,  4.0911e+02],
                [ 1.8250e+02,  2.3186e+02,  3.9021e+02,  4.5252e+02]])
    scores: tensor([0.9434, 0.1816, 0.0680, 0.0392, 0.0258, 0.0155])
    labels: tensor([7, 7, 7, 7, 7, 7])
) at 0x7f6eab794c10>, <InstanceData(

    META INFORMATION

    DATA FIELDS
    bboxes: tensor([[ 1.3882e+00,  5.9346e+01,  4.0408e+02,  3.3091e+02],
                [ 3.6467e+02,  1.3273e+02,  4.2674e+02,  2.9055e+02],
                [ 2.2948e+00, -3.8393e-01,  1.8774e+02,  3.2400e+02],
                [ 5.3200e+00,  2.3990e+02,  3.1167e+02,  3.3230e+02],
                [-1.7622e-01,  2.5288e+02,  2.3748e+02,  3.3300e+02],
                [-2.5967e+00,  1.9070e+02,  3.1783e+02,  3.3381e+02],
                [ 2.0076e+02,  2.3163e+02,  5.0002e+02,  3.3470e+02],
                [ 4.7224e-01,  3.3985e+01,  2.1984e+02,  3.3517e+02],
                [ 1.2938e+00,  1.7187e+02,  2.1726e+02,  3.3466e+02],
                [ 8.1891e+01,  2.5283e+02,  3.1049e+02,  3.3149e+02],
                [-9.2107e-02,  4.1866e-01,  1.7226e+02,  1.7575e+02]])
    scores: tensor([0.9473, 0.9146, 0.8794, 0.2395, 0.0888, 0.0298, 0.0214, 0.0208, 0.0160,
                0.0141, 0.0120])
    labels: tensor([7, 8, 8, 7, 7, 7, 7, 7, 8, 7, 3])
) at 0x7f6eac9372d0>, <InstanceData(

    META INFORMATION

    DATA FIELDS
    bboxes: tensor([[  3.0056,  26.4785, 495.4319, 317.6621],
                [257.7522, 279.4475, 489.9040, 376.4119],
                [382.1909, 331.1739, 483.4341, 374.2949],
                [383.3167, 335.5938, 441.6833, 374.1718],
                [251.3298, 221.0505, 493.2014, 376.6057],
                [248.3202, 121.5623, 499.3361, 372.5783],
                [154.2496, 216.1385, 166.8442, 246.7522],
                [357.1429, 127.8096, 499.8884, 370.6279],
                [409.7569, 351.3511, 484.7744, 375.2114],
                [ 35.3058, 160.3600, 497.8973, 376.7493],
                [180.1309, 100.7995, 492.5253, 378.1067],
                [183.3872, 170.5746, 493.9565, 377.8629],
                [398.1004, 166.0860, 500.3371, 371.8047]])
    scores: tensor([0.9468, 0.1285, 0.0669, 0.0366, 0.0363, 0.0225, 0.0223, 0.0218, 0.0129,
                0.0128, 0.0125, 0.0104, 0.0103])
    labels: tensor([7, 7, 7, 7, 7, 7, 8, 7, 7, 7, 8, 7, 3])
) at 0x7f6eabe26210>, <InstanceData(

    META INFORMATION

    DATA FIELDS
    bboxes: tensor([[154.3900,  25.9610, 350.6882, 148.4746]])
    scores: tensor([0.9536])
    labels: tensor([7])
) at 0x7f6fc8cf5b50>, <InstanceData(

    META INFORMATION

    DATA FIELDS
    bboxes: tensor([[ 5.4654e+01,  9.2944e+01,  4.6449e+02,  2.6956e+02],
                [-3.2652e+00,  3.7368e-01,  5.0678e+02,  8.4783e+01],
                [ 2.2523e+01,  1.4226e+02,  4.4811e+01,  2.5305e+02],
                [ 1.8369e+01,  1.1087e+02,  1.5067e+02,  2.6315e+02],
                [ 2.5029e+02,  1.4985e+02,  4.5361e+02,  2.5953e+02],
                [ 3.5046e+02,  2.3655e+02,  3.6868e+02,  2.6774e+02]])
    scores: tensor([0.9131, 0.0285, 0.0257, 0.0187, 0.0140, 0.0101])
    labels: tensor([7, 7, 3, 7, 7, 8])
) at 0x7f6fc8cf4950>, <InstanceData(

    META INFORMATION

    DATA FIELDS
    bboxes: tensor([[ 1.9803e+01,  5.8279e+01,  4.9895e+02,  3.1396e+02],
                [ 1.0493e-01,  8.7125e-01,  2.1025e+02,  1.9500e+02],
                [ 2.4995e+02,  8.5840e-01,  4.9419e+02,  1.2917e+02],
                [ 2.4889e+02,  2.4603e+00,  4.6322e+02,  9.8208e+01],
                [ 1.7215e+02, -3.1539e-01,  2.9309e+02,  8.2547e+01],
                [ 4.4673e+02,  2.0614e+02,  4.9936e+02,  3.3348e+02],
                [-2.4425e+00, -7.8632e-01,  5.0166e+02,  8.9846e+01],
                [ 4.5056e+02,  4.9713e+01,  5.0023e+02,  3.3774e+02],
                [-1.7203e+00,  1.4086e+00,  2.8551e+02,  8.2969e+01],
                [ 4.4741e+02,  1.4337e-01,  5.0024e+02,  2.9950e+01],
                [ 4.0200e+02,  6.1402e+00,  4.9956e+02,  2.1568e+02],
                [ 3.5307e+02,  2.8277e+00,  4.9693e+02,  3.2415e+02],
                [ 4.0144e+02,  3.9824e+00,  5.0090e+02,  3.2846e+02],
                [-1.6784e+00, -1.5956e-03,  1.6701e+02,  8.2038e+01],
                [ 2.0164e+02,  5.8368e-01,  5.0266e+02,  8.2624e+01],
                [ 3.5900e+02,  8.5336e-02,  4.8475e+02,  8.1903e+01],
                [ 1.2807e+02, -9.8327e-01,  2.7857e+02,  8.3020e+01],
                [ 4.2604e+02, -9.9776e-02,  4.9975e+02,  9.0818e+01],
                [ 1.7857e+02,  8.5948e-01,  5.0151e+02,  8.1470e+01],
                [-2.7031e+00, -2.9007e-01,  2.5427e+02,  8.3205e+01],
                [ 4.7214e+02, -7.6454e-02,  4.9974e+02,  3.0413e+01],
                [ 8.3232e+01, -2.3424e-01,  2.6872e+02,  8.3442e+01],
                [ 1.1495e+00,  2.2466e+00,  2.4397e+02,  3.3702e+02],
                [ 3.7860e+02, -3.4894e-01,  4.3312e+02,  1.6456e+01],
                [ 4.2085e+02,  1.2984e+01,  5.0024e+02,  2.1137e+02],
                [ 4.6266e+02,  2.0919e+01,  4.9984e+02,  2.0949e+02],
                [ 3.7105e+02,  8.0152e-01,  4.8052e+02,  7.9870e+01],
                [ 1.4561e+00,  2.1918e+00,  4.9581e+02,  1.4959e+02],
                [ 3.5793e+02,  2.3168e+00,  4.9832e+02,  3.0476e+02],
                [ 1.9371e+02,  6.5695e-01,  3.3676e+02,  8.4989e+01],
                [ 4.3327e+02,  1.7567e-01,  4.9954e+02,  4.4184e+01],
                [ 2.4250e+02, -3.8620e+00,  4.9500e+02,  3.3552e+02],
                [ 3.8112e+02, -5.2157e-02,  4.6185e+02,  1.5952e+01],
                [ 4.5413e+02, -1.9793e-01,  5.0056e+02,  2.1012e+02],
                [ 4.7178e+02,  3.4098e+01,  5.0009e+02,  2.1055e+02],
                [ 3.6835e+02, -3.6664e-01,  4.9962e+02,  2.1144e+01],
                [ 2.7726e+02,  1.9989e+00,  5.0008e+02,  1.1837e+02],
                [ 3.3928e+02, -4.5346e-01,  5.0056e+02,  8.3368e+01],
                [ 4.2460e+02,  3.3615e-01,  4.9962e+02,  9.1699e+01],
                [ 3.7647e+02,  5.3618e+01,  4.9931e+02,  2.4741e+02],
                [ 2.5176e+02,  1.5027e+00,  4.1738e+02,  7.5998e+01],
                [ 2.4939e+02,  1.4294e+00,  3.3186e+02,  1.2606e+02],
                [ 3.3635e+02, -5.2170e-01,  4.5311e+02,  1.9568e+01],
                [ 4.6423e+02, -1.0355e-01,  5.0061e+02,  7.8043e+01],
                [ 2.9347e+02,  4.0242e+00,  4.9755e+02,  2.8374e+02],
                [ 3.1029e+02, -3.2571e-01,  4.5846e+02,  2.2640e+01],
                [ 2.4965e+02,  5.0484e+01,  4.4215e+02,  1.2081e+02]])
    scores: tensor([0.9468, 0.9038, 0.7368, 0.5620, 0.4287, 0.2666, 0.2074, 0.0999, 0.0742,
                0.0725, 0.0696, 0.0692, 0.0688, 0.0671, 0.0655, 0.0482, 0.0403, 0.0397,
                0.0396, 0.0339, 0.0314, 0.0302, 0.0292, 0.0283, 0.0282, 0.0258, 0.0246,
                0.0243, 0.0230, 0.0230, 0.0225, 0.0194, 0.0190, 0.0184, 0.0183, 0.0182,
                0.0181, 0.0175, 0.0171, 0.0147, 0.0142, 0.0139, 0.0138, 0.0129, 0.0124,
                0.0123, 0.0105])
    labels: tensor([7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 7, 7, 8, 8, 7, 7, 8, 7, 8, 8, 3, 8, 8,
                7, 7, 8, 7, 8, 7, 8, 7, 8, 8, 3, 8, 8, 8, 7, 7, 7, 7, 8, 8, 8, 7, 7])
) at 0x7f6ea87a2ad0>, <InstanceData(

    META INFORMATION

    DATA FIELDS
    bboxes: tensor([[ 1.2379e+02,  8.1221e+01,  1.7406e+02,  2.4144e+02],
                [ 4.4981e+01,  1.2856e+02,  1.4330e+02,  2.8629e+02],
                [ 2.0937e+02,  1.0577e+02,  3.2774e+02,  3.2821e+02],
                [ 3.5726e+02,  8.8662e+01,  4.3766e+02,  2.4825e+02],
                [ 3.5132e+02,  1.2587e+02,  4.3110e+02,  2.6398e+02],
                [ 3.2574e+02,  9.4665e+01,  3.7075e+02,  2.3912e+02],
                [ 4.9315e+02,  1.1870e+02,  4.9982e+02,  1.5435e+02],
                [ 2.5181e+02,  1.8157e+02,  3.4975e+02,  2.8562e+02],
                [ 2.1974e+02,  9.9419e+01,  3.3455e+02,  2.8632e+02],
                [ 4.9224e+02,  1.1590e+02,  4.9995e+02,  1.5148e+02],
                [ 4.5999e+01,  1.1264e+02,  1.1201e+02,  2.2759e+02],
                [ 2.3421e+02,  1.0631e+02,  2.6266e+02,  1.3022e+02],
                [ 2.3929e+02,  1.1170e+02,  2.6110e+02,  1.3088e+02],
                [ 2.3070e+02,  1.3744e+02,  3.4976e+02,  2.8561e+02],
                [ 2.3852e+02,  1.0186e+02,  2.5952e+02,  1.3017e+02],
                [-9.2340e-02,  2.2341e+02,  5.6374e+00,  2.6995e+02],
                [ 2.8599e+02,  1.9022e+02,  3.5034e+02,  2.8478e+02],
                [-4.5790e-02,  1.8465e+02,  6.2225e+00,  2.7043e+02],
                [-2.7738e-01,  1.0856e+02,  9.3228e+00,  1.1722e+02],
                [-1.9509e-01,  1.2347e+02,  7.1836e+00,  2.8278e+02],
                [ 3.8259e+01,  1.0713e+02,  6.0569e+01,  1.1631e+02],
                [-8.3132e-02,  1.6601e+02,  6.4796e+00,  2.7423e+02],
                [ 6.9977e+01,  1.0376e+02,  8.7640e+01,  1.1049e+02],
                [ 4.9196e+02,  9.7746e+01,  5.0022e+02,  1.5421e+02],
                [ 5.2653e+01,  1.3144e+02,  9.7152e+01,  2.0938e+02],
                [ 5.7320e+01,  1.0548e+02,  6.9145e+01,  1.1112e+02],
                [ 8.2361e+00,  1.0907e+02,  2.6822e+01,  1.1769e+02],
                [ 4.9461e+02,  1.1904e+02,  4.9992e+02,  1.8545e+02],
                [ 4.8988e+02,  1.1671e+02,  4.9997e+02,  1.5458e+02],
                [-7.2592e-02,  1.0653e+02,  1.0528e+01,  2.8565e+02],
                [ 4.0275e+01,  7.5532e+01,  3.5328e+02,  3.3150e+02],
                [ 4.0119e+01,  1.0612e+02,  6.0369e+01,  1.1263e+02],
                [ 5.6759e+01,  1.0496e+02,  7.3222e+01,  1.1047e+02],
                [ 3.0645e+00,  1.0929e+02,  1.2878e+01,  1.1785e+02],
                [ 5.9713e+00,  1.1271e+02,  2.1739e+01,  1.1932e+02],
                [ 1.4968e+01,  1.0967e+02,  2.6829e+01,  1.1787e+02],
                [ 2.2421e+02,  1.0021e+02,  3.1603e+02,  2.4608e+02],
                [ 2.2065e+02,  1.1679e+02,  3.2779e+02,  2.4961e+02],
                [-6.4029e-02,  1.8859e+02,  6.0638e+00,  2.7352e+02],
                [ 3.2198e+02,  1.0331e+02,  4.3623e+02,  2.5645e+02],
                [ 3.5460e+01,  1.1407e+02,  7.3329e+01,  1.3319e+02]])
    scores: tensor([0.9399, 0.9390, 0.9292, 0.9253, 0.9028, 0.8257, 0.7153, 0.5400, 0.4783,
                0.4478, 0.3853, 0.3362, 0.2441, 0.2246, 0.1694, 0.1160, 0.0627, 0.0532,
                0.0508, 0.0414, 0.0413, 0.0379, 0.0304, 0.0221, 0.0214, 0.0202, 0.0194,
                0.0189, 0.0175, 0.0160, 0.0152, 0.0144, 0.0140, 0.0132, 0.0126, 0.0114,
                0.0109, 0.0109, 0.0104, 0.0104, 0.0103])
    labels: tensor([8, 7, 7, 8, 7, 8, 7, 8, 8, 8, 8, 7, 7, 8, 8, 7, 8, 7, 3, 8, 3, 8, 3, 8,
                8, 3, 3, 7, 7, 8, 7, 3, 3, 3, 3, 3, 8, 7, 3, 7, 3])
) at 0x7f6eabe039d0>, <InstanceData(

    META INFORMATION

    DATA FIELDS
    bboxes: tensor([[ 2.9656e+02,  1.1233e+02,  3.8000e+02,  1.9661e+02],
                [ 3.8488e+02,  1.0397e+02,  4.6434e+02,  1.9600e+02],
                [ 3.9520e+02,  5.8980e+01,  4.6574e+02,  1.7795e+02],
                [ 3.0874e+02,  6.9711e+01,  3.8032e+02,  1.7307e+02],
                [ 2.5653e+02,  1.0001e+02,  3.1964e+02,  1.8298e+02],
                [ 1.0255e+02,  1.0287e+02,  2.0741e+02,  2.0745e+02],
                [ 2.5706e+02,  1.9562e+00,  5.0036e+02,  1.0734e+02],
                [ 2.6532e+02,  7.0248e+01,  3.2101e+02,  1.6473e+02],
                [ 1.2569e+02,  7.2699e+01,  2.0946e+02,  2.0209e+02],
                [ 4.4206e+02,  4.1958e+01,  4.7200e+02,  1.0832e+02],
                [ 4.2475e+02,  3.9378e+01,  4.4869e+02,  6.5621e+01],
                [ 1.5271e+02,  4.1371e+01,  1.7913e+02,  8.0997e+01],
                [ 6.8293e+01,  3.5225e+01,  8.1609e+01,  6.5578e+01],
                [ 1.2576e+02,  7.4306e+01,  1.7521e+02,  1.1305e+02],
                [ 2.0539e+01,  3.4729e+01,  3.2440e+01,  6.3049e+01],
                [ 5.9072e+01,  4.1150e+01,  8.2334e+01,  6.5605e+01],
                [ 9.7895e-01, -2.3598e-01,  1.9306e+02,  1.1304e+02],
                [ 2.5952e+02,  8.7785e+00,  4.7681e+02,  1.0198e+02],
                [ 4.2634e+02,  6.6099e+01,  4.7444e+02,  1.1677e+02],
                [ 4.3958e+02,  3.8276e+01,  4.5261e+02,  5.7550e+01],
                [ 4.9522e+02,  4.8791e+01,  5.0010e+02,  1.2012e+02],
                [ 2.0457e+01,  3.8811e+01,  3.2668e+01,  6.3651e+01],
                [ 7.6018e-02,  3.9516e+01,  1.1637e+01,  6.4995e+01],
                [ 4.0479e+02,  6.3172e+01,  4.7568e+02,  1.1638e+02],
                [ 3.5120e+02,  7.0058e-01,  4.9880e+02,  9.6296e+01],
                [ 4.9604e+02,  6.3604e+01,  5.0006e+02,  1.2971e+02],
                [ 4.9377e+02,  2.6104e+01,  4.9998e+02,  1.2456e+02],
                [ 6.4635e+01,  4.6866e+01,  8.1459e+01,  6.6330e+01],
                [ 4.2120e+02,  4.4436e+01,  4.4990e+02,  1.0379e+02],
                [ 2.6786e+02,  5.7681e+01,  2.8995e+02,  1.0011e+02],
                [ 1.0089e+02,  1.0181e+02,  1.5926e+02,  1.8996e+02],
                [ 2.7060e+02,  5.7314e+01,  2.8721e+02,  8.7108e+01],
                [ 4.9142e+02,  8.9753e+00,  4.9998e+02,  1.2139e+02],
                [ 4.3980e+02,  7.5850e+01,  4.7426e+02,  1.1697e+02],
                [ 4.8965e+02,  2.9831e+01,  4.9941e+02,  1.2601e+02],
                [-7.2174e-01, -1.3527e+00,  2.0697e+02,  1.7037e+02],
                [ 2.0753e+01,  4.2578e+01,  3.7108e+01,  6.4763e+01],
                [ 7.0222e+01,  4.8029e+01,  8.1927e+01,  6.6728e+01],
                [ 3.5311e+02,  6.8717e-01,  4.9533e+02,  9.8359e+01],
                [ 2.7267e+02,  5.7682e+01,  2.8593e+02,  7.8934e+01],
                [ 2.6448e+02,  6.4779e+01,  3.1326e+02,  1.1497e+02],
                [ 4.9589e+02,  5.9461e+01,  5.0021e+02,  1.7103e+02],
                [-2.6337e-01,  4.5570e+01,  1.5327e+01,  6.8504e+01],
                [ 1.3369e+02,  7.4889e+01,  1.7413e+02,  9.9784e+01]])
    scores: tensor([0.9502, 0.9482, 0.9316, 0.9224, 0.9224, 0.9087, 0.9087, 0.9077, 0.9053,
                0.8750, 0.8716, 0.8521, 0.6274, 0.5679, 0.5449, 0.3599, 0.3503, 0.2969,
                0.2764, 0.1637, 0.1234, 0.1182, 0.1019, 0.0770, 0.0597, 0.0447, 0.0445,
                0.0365, 0.0319, 0.0280, 0.0279, 0.0219, 0.0181, 0.0173, 0.0156, 0.0152,
                0.0152, 0.0146, 0.0127, 0.0109, 0.0109, 0.0109, 0.0107, 0.0106])
    labels: tensor([7, 7, 8, 8, 7, 7, 2, 8, 8, 8, 8, 8, 8, 8, 8, 7, 2, 3, 7, 8, 8, 7, 8, 7,
                2, 8, 8, 7, 8, 8, 7, 8, 8, 7, 8, 2, 7, 7, 3, 8, 8, 8, 7, 8])
) at 0x7f6eac90d3d0>, <InstanceData(

    META INFORMATION

    DATA FIELDS
    bboxes: tensor([[273.7454,  62.8087, 391.8797, 275.4726],
                [ 56.6131, 137.2383, 309.5978, 286.9805],
                [243.2493, 126.1492, 409.4851, 263.6946],
                [153.1183, 138.8060, 159.9677, 151.2330],
                [329.7613,  64.1554, 361.2544, 148.9306],
                [364.7667, 176.9132, 410.6239, 215.0790],
                [167.0702, 127.0471, 418.0861, 279.5936],
                [327.6038,  63.3811, 375.5212, 182.9080]])
    scores: tensor([0.9526, 0.9434, 0.2542, 0.0171, 0.0164, 0.0153, 0.0141, 0.0118])
    labels: tensor([8, 7, 7, 8, 8, 7, 7, 8])
) at 0x7f6eab42d250>, <InstanceData(

    META INFORMATION

    DATA FIELDS
    bboxes: tensor([[168.2290, 113.8739, 404.0366, 263.4699],
                [240.3175,  95.6240, 356.1669, 242.0714],
                [  4.6860, 279.6691, 279.2983, 385.9559],
                [243.3743, 159.9499, 295.2976, 207.0423],
                [189.6792, 325.7678, 277.8989, 375.0135]])
    scores: tensor([0.9600, 0.8965, 0.0139, 0.0128, 0.0118])
    labels: tensor([7, 8, 7, 7, 7])
) at 0x7f6fc8bfdc50>, <InstanceData(

    META INFORMATION

    DATA FIELDS
    bboxes: tensor([[ 65.7897,  97.3768, 381.8665, 301.4513],
                [222.5854, 103.4998, 230.9302, 122.0861],
                [173.3919, 152.6381, 218.9909, 184.4713],
                [ 21.4184, 203.7533, 409.4409, 381.4030],
                [208.2638, 186.7466, 309.7049, 261.6909],
                [222.0536,  49.4321, 503.7277, 452.9117],
                [ 43.3022, 175.4740,  63.6314, 191.7135],
                [230.1973,  86.3625, 386.2090, 271.4500],
                [188.7839, 133.8487, 253.4036, 181.7763]])
    scores: tensor([0.9282, 0.1169, 0.0335, 0.0265, 0.0209, 0.0161, 0.0154, 0.0122, 0.0111])
    labels: tensor([7, 8, 7, 7, 7, 8, 7, 7, 7])
) at 0x7f6eac937490>, <InstanceData(

    META INFORMATION

    DATA FIELDS
    bboxes: tensor([[ 42.1663,  99.3477, 312.5212, 277.9064],
                [  0.5352,  55.6602,  59.4746, 105.5462],
                [170.6105, 123.0403, 497.3582, 328.9620],
                [117.7825,  40.8042, 292.3737, 225.7913],
                [306.4886,  34.3128, 498.1989, 322.4490],
                [296.9205,  18.5393, 394.0952,  72.1637],
                [194.4128,  18.4194, 250.1185,  73.1131],
                [272.4044,  20.7031, 299.0800,  96.7863],
                [336.0901,  28.3117, 390.0818,  76.2968],
                [122.3423,  53.2957, 163.0093, 107.1300],
                [134.5225,  73.2941, 252.1963, 157.0007],
                [435.9511,  22.9213, 451.5489,  36.2137],
                [290.7020,  52.3369, 399.5324, 132.6796],
                [ 59.4583,  54.6140,  95.4245,  99.9567],
                [130.0523,  27.3868, 162.1352,  61.4133],
                [ 92.1215,  49.4632, 127.8003, 101.6922],
                [379.5861,  19.7893, 398.5390,  66.5713],
                [291.5353,  38.3869, 490.1053, 142.3360],
                [268.6132,  40.6600, 303.2619, 100.2492],
                [451.4218,  25.7971, 463.4220,  38.2659],
                [322.3743,  65.6900, 468.2507, 304.1478],
                [334.3202,  50.3775, 396.1486,  98.7286],
                [125.5087,  25.2893, 163.9444,  94.8349],
                [ -0.5915,  44.3139, 504.4978, 330.2079],
                [161.9870,  54.1434, 204.6146,  87.0586],
                [288.5361,  74.3392, 496.2296, 324.1879],
                [ 72.0308,  24.8707,  91.7387,  59.9773],
                [436.3911,  21.5577, 451.8902,  61.7290],
                [481.7053,  33.1701, 499.5447,  45.8230],
                [273.6105,  20.8099, 300.9989,  53.5968],
                [129.9732,  65.9688, 274.7144, 182.8667],
                [394.3688,  33.0199, 498.5999, 325.6936],
                [175.5467,  19.2355, 296.7189,  58.3914],
                [376.8923,  19.2975, 400.4515,  93.3127],
                [ 73.0463,  34.6426, 127.9303, 100.2165],
                [292.9576,  60.2070, 363.2924, 132.2258],
                [448.9414,  25.6731, 465.1211,  60.8827],
                [163.2302,  29.3887, 193.6057,  70.6334],
                [319.7281,  34.8265, 487.3032, 183.7584],
                [163.4376,  37.8426, 504.5312, 336.2888],
                [327.9939,  33.9939, 496.2249, 185.5669],
                [403.1187,  35.8638, 486.7251, 127.9772],
                [401.7171,  33.4986, 499.8454, 156.0067],
                [163.4580,  34.4280, 205.8780,  76.8161],
                [163.7186,  35.5413, 208.7424,  77.0689],
                [188.1347,  44.7581, 290.7716, 145.1376],
                [156.6527,  56.6615, 201.9411, 108.5457],
                [366.9370,  30.5246, 500.2505, 331.3115],
                [289.3442,  56.6106, 450.4996, 136.0173],
                [324.6936,  48.3307, 394.8376, 114.0467],
                [440.1209,  64.5564, 500.5041, 329.4819],
                [417.1564, 114.4800, 500.0312, 332.4481],
                [427.8382,  34.0693, 499.5055,  75.5159],
                [422.6665, 115.2606, 499.9897, 333.2288],
                [164.4417,  28.5181, 186.7301,  61.2091],
                [453.9222, 111.1492, 500.7653, 329.9239],
                [175.0922,  18.8977, 267.0953,  51.2641],
                [ 40.2116,  52.0201,  75.4134,  98.2570],
                [399.6084,  38.1551, 444.1416, 114.0737],
                [163.0535,  45.0103, 204.3293,  84.4817],
                [435.2440,  24.9276, 463.9748,  64.3605],
                [451.5647,  25.5696, 467.1854,  40.8841],
                [ 91.4061,  33.1843, 126.9533, 103.1386],
                [294.4671,  32.3255, 493.8142, 245.1992],
                [361.0066,  49.1593, 396.4153,  97.9952],
                [481.9555,  32.7376, 500.0758,  51.7689],
                [388.6934,  33.3856, 498.8067, 176.6120],
                [ 38.1555,  52.1281,  74.0516,  83.9995]])
    scores: tensor([0.9312, 0.8984, 0.8848, 0.8828, 0.8496, 0.8433, 0.8403, 0.8267, 0.7563,
                0.7153, 0.6997, 0.6372, 0.6196, 0.5654, 0.5420, 0.5352, 0.4941, 0.4124,
                0.3896, 0.3320, 0.3093, 0.2952, 0.2883, 0.2871, 0.2583, 0.2035, 0.1708,
                0.1691, 0.1440, 0.1396, 0.1342, 0.1257, 0.0809, 0.0758, 0.0641, 0.0609,
                0.0517, 0.0509, 0.0494, 0.0442, 0.0402, 0.0345, 0.0341, 0.0297, 0.0292,
                0.0263, 0.0259, 0.0256, 0.0239, 0.0235, 0.0229, 0.0219, 0.0218, 0.0210,
                0.0190, 0.0189, 0.0180, 0.0178, 0.0168, 0.0155, 0.0153, 0.0148, 0.0139,
                0.0128, 0.0127, 0.0124, 0.0110, 0.0104])
    labels: tensor([7, 7, 7, 8, 8, 3, 8, 8, 8, 7, 7, 8, 7, 7, 8, 7, 8, 7, 7, 8, 8, 7, 8, 7,
                7, 7, 8, 8, 3, 8, 7, 8, 3, 8, 7, 7, 8, 8, 8, 8, 7, 8, 8, 8, 7, 8, 7, 7,
                7, 7, 7, 8, 3, 7, 8, 7, 3, 7, 8, 8, 8, 8, 8, 7, 7, 3, 7, 7])
) at 0x7f6eac90c9d0>, <InstanceData(

    META INFORMATION

    DATA FIELDS
    bboxes: tensor([[ 4.1983e+01,  2.6130e+01,  4.3458e+02,  3.5160e+02],
                [ 3.1558e+02,  2.5677e-01,  3.6021e+02,  7.1228e+01],
                [ 4.0353e+02,  9.4569e-01,  4.9881e+02,  3.7777e+02],
                [ 8.7226e+01, -9.5624e-02,  2.0398e+02,  8.3348e+01],
                [ 5.9931e+01,  1.2541e+02,  4.2444e+02,  3.4998e+02],
                [ 2.9589e+02,  9.2185e-02,  3.2013e+02,  7.5640e+01],
                [ 1.8113e+00,  4.0539e+00,  4.5991e+02,  1.8032e+02],
                [ 2.4462e+00,  1.1596e+00,  2.9306e+02,  1.7950e+02],
                [ 2.9496e+02, -2.1425e-02,  3.4059e+02,  7.5363e+01],
                [ 8.8643e+01,  4.7193e-02,  1.3460e+02,  2.3634e+01],
                [ 4.4904e+02, -2.8754e-01,  4.9706e+02,  2.7778e+01],
                [ 4.2366e+02, -1.2599e+00,  4.9744e+02,  1.1991e+02],
                [-3.4711e-01,  9.4712e-02,  2.8716e+01,  4.1971e+01],
                [ 2.1067e+02,  1.1748e-01,  2.4948e+02,  1.1162e+01],
                [ 2.5099e+02, -7.1129e-02,  2.9237e+02,  7.4290e+01],
                [ 2.0931e+02,  1.0396e-01,  2.6334e+02,  6.9281e+01],
                [ 2.8394e+02,  5.6250e-01,  2.9575e+02,  3.8402e+01],
                [ 2.4477e+01, -4.5836e-01,  2.4427e+02,  1.8229e+02],
                [ 2.5427e+02, -8.7392e-02,  3.1995e+02,  7.7236e+01],
                [ 4.3871e+02,  3.6997e+00,  4.9957e+02,  3.1427e+02],
                [ 4.2446e+02,  8.8704e-02,  4.6617e+02,  1.1915e+02],
                [-8.7855e-01,  2.1717e+00,  4.9541e+02,  1.0349e+02],
                [ 2.2611e+02, -1.7437e-01,  2.8522e+02,  7.1268e+01],
                [-9.4012e-01,  2.9906e-01,  6.5198e+01,  4.0179e+01],
                [-1.0145e-01, -1.0079e+00,  2.7201e+01,  9.4660e+01],
                [-3.7624e-01, -3.9503e-01,  4.0220e+01,  3.7187e+01],
                [ 2.1643e+02, -1.7022e-01,  2.5427e+02,  9.2950e+00],
                [ 6.9228e-01,  5.4580e-01,  9.5987e+01,  9.5841e+01],
                [ 6.6397e+01,  2.0858e-01,  1.3165e+02,  2.6989e+01],
                [-1.9445e+00,  2.3147e-01,  9.9894e+01,  3.9417e+01],
                [ 3.6784e+02, -1.1191e-02,  4.4076e+02,  1.7479e+01],
                [-8.4253e-01,  4.1618e-01,  9.5764e+01,  3.9525e+01],
                [ 4.0830e-01,  6.9750e-01,  2.3835e+01,  5.9996e+01],
                [ 5.6368e+01,  1.3004e+00,  2.2293e+02,  9.5282e+01],
                [ 2.6979e+02,  1.9488e+00,  5.0560e+02,  3.7657e+02],
                [ 4.5994e+02,  1.3848e-01,  4.9943e+02,  7.7010e+01],
                [ 8.0538e+01, -2.6877e-01,  1.7454e+02,  2.5733e+01],
                [-5.2306e-02, -2.5321e+00,  5.5521e+01,  9.4622e+01],
                [ 4.4381e+02,  1.2242e+00,  4.9994e+02,  1.6333e+02],
                [-4.6668e-01, -3.3558e-01,  2.5662e+01,  4.2450e+01],
                [ 8.0389e+01, -1.1820e+00,  2.1141e+02,  2.8745e+01],
                [-2.1565e+00,  3.9288e-01,  2.2462e+02,  1.0361e+02],
                [ 1.9015e+01, -1.1009e-01,  1.3831e+02,  2.8699e+01],
                [ 4.3490e-01,  1.7543e-01,  2.2636e+01,  3.4029e+01],
                [ 1.4312e-01,  2.6076e+00,  9.8422e+00,  7.7861e+01],
                [ 8.0777e+01, -3.4921e+00,  2.0555e+02,  1.7420e+02],
                [ 4.2075e+01, -2.9984e-02,  1.1388e+02,  2.7252e+01],
                [ 3.7132e+02,  4.8638e-01,  4.3962e+02,  4.7707e+01],
                [ 7.1799e-02, -3.6557e-01,  1.1165e+01,  4.3188e+01],
                [ 1.2882e-01,  6.7884e-01,  2.0147e+01,  8.0474e+01],
                [ 7.3508e+01,  3.3287e+00,  2.5716e+02,  7.9288e+01],
                [ 2.9094e+02,  9.0368e-01,  5.3093e+02,  2.8757e+02],
                [ 2.9163e+02,  2.1386e-01,  5.0095e+02,  9.8321e+01],
                [-1.4827e-01, -7.3805e-01,  2.6418e+01,  1.0230e+02],
                [-4.1297e-02,  9.8677e-01,  1.0344e+01,  3.1630e+01],
                [ 1.2278e-02, -5.9870e-01,  1.0748e+01,  4.5179e+01],
                [ 2.0121e+02,  2.2101e-01,  2.3785e+02,  1.3426e+01]])
    scores: tensor([0.9067, 0.7593, 0.7407, 0.7021, 0.7021, 0.6509, 0.5425, 0.4441, 0.3022,
                0.2227, 0.1725, 0.1693, 0.1407, 0.1155, 0.0975, 0.0951, 0.0775, 0.0689,
                0.0602, 0.0454, 0.0439, 0.0418, 0.0410, 0.0390, 0.0374, 0.0356, 0.0346,
                0.0308, 0.0297, 0.0265, 0.0258, 0.0257, 0.0255, 0.0254, 0.0235, 0.0222,
                0.0215, 0.0214, 0.0197, 0.0193, 0.0184, 0.0180, 0.0177, 0.0167, 0.0164,
                0.0154, 0.0147, 0.0146, 0.0144, 0.0144, 0.0133, 0.0113, 0.0110, 0.0106,
                0.0106, 0.0104, 0.0102])
    labels: tensor([7, 8, 8, 8, 7, 8, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 7, 8, 8,
                8, 8, 8, 8, 8, 8, 8, 7, 8, 8, 8, 8, 8, 8, 8, 3, 8, 7, 7, 8, 8, 8, 8, 8,
                8, 8, 8, 8, 7, 7, 8, 7, 8])
) at 0x7f6eac90f6d0>, <InstanceData(

    META INFORMATION

    DATA FIELDS
    bboxes: tensor([[ 10.1531, 144.9379, 373.2454, 496.8590],
                [109.7389,  75.1407, 293.3861, 463.9218],
                [108.1947,  82.8591, 288.6803, 315.9690],
                [  6.3213, 251.7752, 239.3818, 442.3655]])
    scores: tensor([0.9160, 0.8369, 0.0663, 0.0124])
    labels: tensor([7, 8, 8, 7])
) at 0x7f6fc8cf4b10>]
Using default root folder: ./tiny_motorbike_coco/tiny_motorbike/Annotations/... Specify `model.mmdet_image.coco_root=...` in hyperparameters if you think it is wrong.
/home/ci/opt/venv/lib/python3.11/site-packages/mmdet/models/backbones/csp_darknet.py:118: FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead.
  with torch.cuda.amp.autocast(enabled=False):
A new predictor save path is created. This is to prevent you to overwrite previous predictor saved here. You could check current save path at predictor._save_path. If you still want to use this path, set resume=True
No path specified. Models will be saved in: "AutogluonModels/ag-20250205_031145"
Saved detection results to /home/ci/autogluon/docs/tutorials/multimodal/object_detection/quick_start/AutogluonModels/ag-20250205_031145/result.txt

The output pred is a pandas DataFrame that has two columns, image and bboxes.

In image, each row contains the image path

In bboxes, each row is a list of dictionaries, each one representing a bounding box: {"class": <predicted_class_name>, "bbox": [x1, y1, x2, y2], "score": <confidence_score>}

Note that, by default, the predictor.predict does not save the detection results into a file.

To run inference and save results, run the following:

pred = predictor.predict(test_path, save_results=True)
loading annotations into memory...
Done (t=0.00s)
creating index...
index created!
loading annotations into memory...
Done (t=0.00s)
creating index...
index created!
saving file at /home/ci/autogluon/docs/tutorials/multimodal/object_detection/quick_start/AutogluonModels/ag-20250205_031147-001/result.json
Using default root folder: ./tiny_motorbike_coco/tiny_motorbike/Annotations/... Specify `model.mmdet_image.coco_root=...` in hyperparameters if you think it is wrong.
/home/ci/opt/venv/lib/python3.11/site-packages/mmdet/models/backbones/csp_darknet.py:118: FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead.
  with torch.cuda.amp.autocast(enabled=False):
A new predictor save path is created. This is to prevent you to overwrite previous predictor saved here. You could check current save path at predictor._save_path. If you still want to use this path, set resume=True
No path specified. Models will be saved in: "AutogluonModels/ag-20250205_031147"
Saved detection results to /home/ci/autogluon/docs/tutorials/multimodal/object_detection/quick_start/AutogluonModels/ag-20250205_031147/result.txt
A new predictor save path is created. This is to prevent you to overwrite previous predictor saved here. You could check current save path at predictor._save_path. If you still want to use this path, set resume=True
No path specified. Models will be saved in: "AutogluonModels/ag-20250205_031147-001"
Using default root folder: ./tiny_motorbike_coco/tiny_motorbike/Annotations/... Specify `model.mmdet_image.coco_root=...` in hyperparameters if you think it is wrong.
--- Logging error ---
Traceback (most recent call last):
  File "/opt/conda/lib/python3.11/logging/__init__.py", line 1110, in emit
    msg = self.format(record)
          ^^^^^^^^^^^^^^^^^^^
  File "/opt/conda/lib/python3.11/logging/__init__.py", line 953, in format
    return fmt.format(record)
           ^^^^^^^^^^^^^^^^^^
  File "/opt/conda/lib/python3.11/logging/__init__.py", line 687, in format
    record.message = record.getMessage()
                     ^^^^^^^^^^^^^^^^^^^
  File "/opt/conda/lib/python3.11/logging/__init__.py", line 377, in getMessage
    msg = msg % self.args
          ~~~~^~~~~~~~~~~
TypeError: not all arguments converted during string formatting
Call stack:
  File "<frozen runpy>", line 198, in _run_module_as_main
  File "<frozen runpy>", line 88, in _run_code
  File "/home/ci/opt/venv/lib/python3.11/site-packages/ipykernel_launcher.py", line 18, in <module>
    app.launch_new_instance()
  File "/home/ci/opt/venv/lib/python3.11/site-packages/traitlets/config/application.py", line 1075, in launch_instance
    app.start()
  File "/home/ci/opt/venv/lib/python3.11/site-packages/ipykernel/kernelapp.py", line 739, in start
    self.io_loop.start()
  File "/home/ci/opt/venv/lib/python3.11/site-packages/tornado/platform/asyncio.py", line 205, in start
    self.asyncio_loop.run_forever()
  File "/opt/conda/lib/python3.11/asyncio/base_events.py", line 608, in run_forever
    self._run_once()
  File "/opt/conda/lib/python3.11/asyncio/base_events.py", line 1936, in _run_once
    handle._run()
  File "/opt/conda/lib/python3.11/asyncio/events.py", line 84, in _run
    self._context.run(self._callback, *self._args)
  File "/home/ci/opt/venv/lib/python3.11/site-packages/ipykernel/kernelbase.py", line 545, in dispatch_queue
    await self.process_one()
  File "/home/ci/opt/venv/lib/python3.11/site-packages/ipykernel/kernelbase.py", line 534, in process_one
    await dispatch(*args)
  File "/home/ci/opt/venv/lib/python3.11/site-packages/ipykernel/kernelbase.py", line 437, in dispatch_shell
    await result
  File "/home/ci/opt/venv/lib/python3.11/site-packages/ipykernel/ipkernel.py", line 362, in execute_request
    await super().execute_request(stream, ident, parent)
  File "/home/ci/opt/venv/lib/python3.11/site-packages/ipykernel/kernelbase.py", line 778, in execute_request
    reply_content = await reply_content
  File "/home/ci/opt/venv/lib/python3.11/site-packages/ipykernel/ipkernel.py", line 449, in do_execute
    res = shell.run_cell(
  File "/home/ci/opt/venv/lib/python3.11/site-packages/ipykernel/zmqshell.py", line 549, in run_cell
    return super().run_cell(*args, **kwargs)
  File "/home/ci/opt/venv/lib/python3.11/site-packages/IPython/core/interactiveshell.py", line 3009, in run_cell
    result = self._run_cell(
  File "/home/ci/opt/venv/lib/python3.11/site-packages/IPython/core/interactiveshell.py", line 3064, in _run_cell
    result = runner(coro)
  File "/home/ci/opt/venv/lib/python3.11/site-packages/IPython/core/async_helpers.py", line 129, in _pseudo_sync_runner
    coro.send(None)
  File "/home/ci/opt/venv/lib/python3.11/site-packages/IPython/core/interactiveshell.py", line 3269, in run_cell_async
    has_raised = await self.run_ast_nodes(code_ast.body, cell_name,
  File "/home/ci/opt/venv/lib/python3.11/site-packages/IPython/core/interactiveshell.py", line 3448, in run_ast_nodes
    if await self.run_code(code, result, async_=asy):
  File "/home/ci/opt/venv/lib/python3.11/site-packages/IPython/core/interactiveshell.py", line 3508, in run_code
    exec(code_obj, self.user_global_ns, self.user_ns)
  File "/tmp/ipykernel_4465/4018775541.py", line 1, in <module>
    pred = predictor.predict(test_path, save_results=True)
  File "/home/ci/autogluon/multimodal/src/autogluon/multimodal/predictor.py", line 640, in predict
    return self._learner.predict(
  File "/home/ci/autogluon/multimodal/src/autogluon/multimodal/learners/object_detection.py", line 755, in predict
    save_result_coco_format(
  File "/home/ci/autogluon/multimodal/src/autogluon/multimodal/utils/object_detection.py", line 1610, in save_result_coco_format
    logger.info(25, f"Saved detection result to {result_path}")
Message: 25
Arguments: ('Saved detection result to /home/ci/autogluon/docs/tutorials/multimodal/object_detection/quick_start/AutogluonModels/ag-20250205_031147-001/result.json',)
Saved detection results as coco to /home/ci/autogluon/docs/tutorials/multimodal/object_detection/quick_start/AutogluonModels/ag-20250205_031147-001/result.json

Here, we save pred into a .txt file, which exactly follows the same layout as in pred. You can use a predictor initialized in any way (i.e. finetuned predictor, predictor with pretrained model, etc.).

Visualizing Results

To run visualizations, ensure that you have opencv installed. If you haven’t already, install opencv by running

!pip install opencv-python
Requirement already satisfied: opencv-python in /home/ci/opt/venv/lib/python3.11/site-packages (4.11.0.86)
Requirement already satisfied: numpy>=1.21.2 in /home/ci/opt/venv/lib/python3.11/site-packages (from opencv-python) (1.26.4)

To visualize the detection bounding boxes, run the following:

from autogluon.multimodal.utils import ObjectDetectionVisualizer

conf_threshold = 0.4  # Specify a confidence threshold to filter out unwanted boxes
image_result = pred.iloc[30]

img_path = image_result.image  # Select an image to visualize

visualizer = ObjectDetectionVisualizer(img_path)  # Initialize the Visualizer
out = visualizer.draw_instance_predictions(image_result, conf_threshold=conf_threshold)  # Draw detections
visualized = out.get_image()  # Get the visualized image

from PIL import Image
from IPython.display import display
img = Image.fromarray(visualized, 'RGB')
display(img)
---------------------------------------------------------------------------
AttributeError                            Traceback (most recent call last)
Cell In[17], line 4
      1 from autogluon.multimodal.utils import ObjectDetectionVisualizer
      3 conf_threshold = 0.4  # Specify a confidence threshold to filter out unwanted boxes
----> 4 image_result = pred.iloc[30]
      6 img_path = image_result.image  # Select an image to visualize
      8 visualizer = ObjectDetectionVisualizer(img_path)  # Initialize the Visualizer

AttributeError: 'list' object has no attribute 'iloc'

Testing on Your Own Data

You can also predict on your own images with various input format. The follow is an example:

Download the example image:

from autogluon.multimodal import download
image_url = "https://raw.githubusercontent.com/dmlc/web-data/master/gluoncv/detection/street_small.jpg"
test_image = download(image_url)

Run inference on data in a json file of COCO format (See Convert Data to COCO Format for more details about COCO format). Note that since the root is by default the parent folder of the annotation file, here we put the annotation file in a folder:

import json

# create a input file for demo
data = {"images": [{"id": 0, "width": -1, "height": -1, "file_name": test_image}], "categories": []}
os.mkdir("input_data_for_demo")
input_file = "input_data_for_demo/demo_annotation.json"
with open(input_file, "w+") as f:
    json.dump(data, f)

pred_test_image = predictor.predict(input_file)
print(pred_test_image)

Run inference on data in a list of image file names:

pred_test_image = predictor.predict([test_image])
print(pred_test_image)

Other Examples

You may go to AutoMM Examples to explore other examples about AutoMM.

Customization

To learn how to customize AutoMM, please refer to Customize AutoMM.

Citation

@article{DBLP:journals/corr/abs-2107-08430,
  author    = {Zheng Ge and
               Songtao Liu and
               Feng Wang and
               Zeming Li and
               Jian Sun},
  title     = {{YOLOX:} Exceeding {YOLO} Series in 2021},
  journal   = {CoRR},
  volume    = {abs/2107.08430},
  year      = {2021},
  url       = {https://arxiv.org/abs/2107.08430},
  eprinttype = {arXiv},
  eprint    = {2107.08430},
  timestamp = {Tue, 05 Apr 2022 14:09:44 +0200},
  biburl    = {https://dblp.org/rec/journals/corr/abs-2107-08430.bib},
  bibsource = {dblp computer science bibliography, https://dblp.org},
}