TimeSeriesPredictor.plot¶
- TimeSeriesPredictor.plot(data: TimeSeriesDataFrame | DataFrame | Path | str, predictions: TimeSeriesDataFrame | None = None, quantile_levels: List[float] | None = None, item_ids: List[str | int] | None = None, max_num_item_ids: int = 8, max_history_length: int | None = None, point_forecast_column: str | None = None, matplotlib_rc_params: dict | None = None)[source]¶
- Plot historic time series values and the forecasts. - Parameters:
- data (Union[TimeSeriesDataFrame, pd.DataFrame, Path, str]) – Observed time series data. 
- predictions (TimeSeriesDataFrame, optional) – Predictions generated by calling - predict().
- quantile_levels (List[float], optional) – Quantile levels for which to plot the prediction intervals. Defaults to lowest & highest quantile levels available in - predictions.
- item_ids (List[Union[str, int]], optional) – If provided, plots will only be generated for time series with these item IDs. By default (if set to - None), item IDs are selected randomly. In either case, plots are generated for at most- max_num_item_idstime series.
- max_num_item_ids (int, default = 8) – At most this many time series will be plotted by the method. 
- max_history_length (int, optional) – If provided, at most this many time steps will be shown for each time series in - data.
- point_forecast_column (str, optional) – Name of the column in - predictionsthat will be plotted as the point forecast. Defaults to- "0.5", if this column is present in- predictions, otherwise- "mean".
- matplotlib_rc_params (dict, optional) – Dictionary describing the plot style that will be passed to [matplotlib.pyplot.rc_context](https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.rc_context.html). See [matplotlib documentation](https://matplotlib.org/stable/users/explain/customizing.html#the-default-matplotlibrc-file) for the list of available options.