.. _sec_forecasting_quickstart: Forecasting Time Series - Quick Start ===================================== Via a simple ``fit()`` call, AutoGluon can train and tune - simple forecasting models (e.g., ARIMA, ETS, Theta), - powerful deep learning models (e.g., DeepAR, Temporal Fusion Transformer), - tree-based models (e.g., XGBoost, CatBoost, LightGBM), - an ensemble that combines predictions of other models to produce multi-step ahead *probabilistic* forecasts for univariate time series data. This tutorial demonstrates how to quickly start using AutoGluon to generate hourly forecasts for the `M4 forecasting competition `__ dataset. Loading time series data as a ``TimeSeriesDataFrame`` ----------------------------------------------------- First, we import some required modules .. code:: python import pandas as pd from autogluon.timeseries import TimeSeriesDataFrame, TimeSeriesPredictor To use ``autogluon.timeseries``, we will only need the following two classes: - ``TimeSeriesDataFrame`` stores a dataset consisting of multiple time series. - ``TimeSeriesPredictor`` takes care of fitting, tuning and selecting the best forecasting models, as well as generating new forecasts. We load a subset of the M4 hourly dataset as a ``pandas.DataFrame`` .. code:: python df = pd.read_csv("https://autogluon.s3.amazonaws.com/datasets/timeseries/m4_hourly_subset/train.csv") df.head() .. raw:: html
item_id timestamp target
0 H1 1750-01-01 00:00:00 605.0
1 H1 1750-01-01 01:00:00 586.0
2 H1 1750-01-01 02:00:00 586.0
3 H1 1750-01-01 03:00:00 559.0
4 H1 1750-01-01 04:00:00 511.0
AutoGluon expects time series data in `long format `__. Each row of the data frame contains a single observation (timestep) of a single time series represented by - unique ID of the time series (``"item_id"``) as int or str - timestamp of the observation (``"timestamp"``) as a ``pandas.Timestamp`` or compatible format - numeric value of the time series (``"target"``) The raw dataset should always follow this format with at least three columns for unique ID, timestamp, and target value, but the names of these columns can be arbitrary. It is important, however, that we provide the names of the columns when constructing a ``TimeSeriesDataFrame`` that is used by AutoGluon. AutoGluon will raise an exception if the data doesn’t match the expected format. .. code:: python train_data = TimeSeriesDataFrame.from_data_frame( df, id_column="item_id", timestamp_column="timestamp" ) train_data.head() .. raw:: html
target
item_id timestamp
H1 1750-01-01 00:00:00 605.0
1750-01-01 01:00:00 586.0
1750-01-01 02:00:00 586.0
1750-01-01 03:00:00 559.0
1750-01-01 04:00:00 511.0
We refer to each individual time series stored in a ``TimeSeriesDataFrame`` as an *item*. For example, items might correspond to different products in demand forecasting, or to different stocks in financial datasets. This setting is also referred to as a *panel* of time series. Note that this is *not* the same as multivariate forecasting — AutoGluon generates forecasts for each time series individually, without modeling interactions between different items (time series). ``TimeSeriesDataFrame`` inherits from `pandas.DataFrame `__, so all attributes and methods of ``pandas.DataFrame`` are available in a ``TimeSeriesDataFrame``. It also provides other utility functions, such as loaders for different data formats (see :class:`autogluon.timeseries.TimeSeriesDataFrame` for details). Training time series models with ``TimeSeriesPredictor.fit`` ------------------------------------------------------------ To forecast future values of the time series, we need to create a ``TimeSeriesPredictor`` object. Models in ``autogluon.timeseries`` forecast time series *multiple steps* into the future. We choose the number of these steps — the *prediction length* (also known as the *forecast horizon*) — depending on our task. For example, our dataset contains time series measured at hourly *frequency*, so we set ``prediction_length = 48`` to train models that forecast up to 48 hours into the future. We instruct AutoGluon to save trained models in the folder ``./autogluon-m4-hourly``. We also specify that AutoGluon should rank models according to `symmetric mean absolute percentage error (sMAPE) `__, and that data that we want to forecast is stored in the column ``"target"`` of the ``TimeSeriesDataFrame``. .. code:: python predictor = TimeSeriesPredictor( prediction_length=48, path="autogluon-m4-hourly", target="target", eval_metric="sMAPE", ) predictor.fit( train_data, presets="medium_quality", time_limit=600, ) .. parsed-literal:: :class: output ================ TimeSeriesPredictor ================ TimeSeriesPredictor.fit() called Setting presets to: medium_quality Fitting with arguments: {'enable_ensemble': True, 'evaluation_metric': 'sMAPE', 'hyperparameter_tune_kwargs': None, 'hyperparameters': 'medium_quality', 'prediction_length': 48, 'random_seed': None, 'target': 'target', 'time_limit': 600} Provided training data set with 148060 rows, 200 items (item = single time series). Average time series length is 740.3. Training artifacts will be saved to: /home/ci/autogluon/docs/_build/eval/tutorials/timeseries/autogluon-m4-hourly ===================================================== AutoGluon will save models to autogluon-m4-hourly/ AutoGluon will gauge predictive performance using evaluation metric: 'sMAPE' This metric's sign has been flipped to adhere to being 'higher is better'. The reported score can be multiplied by -1 to get the metric value. Provided dataset contains following columns: target: 'target' tuning_data is None. Will use the last prediction_length = 48 time steps of each time series as a hold-out validation set. Starting training. Start time is 2023-02-06 23:12:19 Models that will be trained: ['Naive', 'SeasonalNaive', 'ETS', 'Theta', 'ARIMA', 'AutoETS', 'AutoGluonTabular', 'DeepAR'] Training timeseries model Naive. Training for up to 599.88s of the 599.88s of remaining time. -0.4341 = Validation score (-sMAPE) 0.00 s = Training runtime 6.17 s = Validation (prediction) runtime Training timeseries model SeasonalNaive. Training for up to 593.69s of the 593.69s of remaining time. -0.1686 = Validation score (-sMAPE) 0.00 s = Training runtime 0.42 s = Validation (prediction) runtime Training timeseries model ETS. Training for up to 593.25s of the 593.25s of remaining time. -0.2700 = Validation score (-sMAPE) 0.00 s = Training runtime 36.01 s = Validation (prediction) runtime Training timeseries model Theta. Training for up to 557.23s of the 557.23s of remaining time. -0.2236 = Validation score (-sMAPE) 0.00 s = Training runtime 16.72 s = Validation (prediction) runtime Training timeseries model ARIMA. Training for up to 540.50s of the 540.50s of remaining time. -0.5269 = Validation score (-sMAPE) 0.00 s = Training runtime 20.67 s = Validation (prediction) runtime Training timeseries model AutoETS. Training for up to 519.82s of the 519.82s of remaining time. -0.2381 = Validation score (-sMAPE) 0.00 s = Training runtime 123.44 s = Validation (prediction) runtime Training timeseries model AutoGluonTabular. Training for up to 396.37s of the 396.37s of remaining time. -0.1089 = Validation score (-sMAPE) 48.42 s = Training runtime 3.92 s = Validation (prediction) runtime Training timeseries model DeepAR. Training for up to 344.02s of the 344.02s of remaining time. -0.1291 = Validation score (-sMAPE) 109.24 s = Training runtime 2.98 s = Validation (prediction) runtime Fitting simple weighted ensemble. -0.1062 = Validation score (-sMAPE) 8.30 s = Training runtime 13.08 s = Validation (prediction) runtime Training complete. Models trained: ['Naive', 'SeasonalNaive', 'ETS', 'Theta', 'ARIMA', 'AutoETS', 'AutoGluonTabular', 'DeepAR', 'WeightedEnsemble'] Total runtime: 384.14 s Best model: WeightedEnsemble Best model score: -0.1062 .. parsed-literal:: :class: output Here we used the ``"medium_quality"`` presets and limited the training time to 10 minutes (600 seconds). The presets define which models AutoGluon will try to fit. For ``medium_quality`` presets, these are simple baselines (``Naive``, ``SeasonalNaive``), statistical models (``ARIMA``, ``ETS``, ``Theta``), tree-based models XGBoost, LightGBM and CatBoost wrapped by ``AutoGluonTabular``, a deep learning model ``DeepAR``, and a weighted ensemble combining these. Other available presets for ``TimeSeriesPredictor`` are ``"fast_training"``, ``"high_quality"`` and ``"best_quality"``. Higher quality presets will usually produce more accurate forecasts but take longer to train and may produce less computationally efficient models. Inside ``fit()``, AutoGluon will train as many models as possible within the given time limit. Trained models are then ranked based on their performance on an internal validation set. By default, this validation set is constructed by holding out the last ``prediction_length`` timesteps of each time series in ``train_data``. Generating forecasts with ``TimeSeriesPredictor.predict`` --------------------------------------------------------- We can now use the fitted ``TimeSeriesPredictor`` to forecast the future time series values. By default, AutoGluon will make forecasts using the model that had the best score on the internal validation set. The forecast always includes predictions for the next ``prediction_length`` timesteps, starting from the end of each time series in ``train_data``. .. code:: python predictions = predictor.predict(train_data) predictions.head() .. parsed-literal:: :class: output Global seed set to 123 Model not specified in predict, will default to the model with the best validation score: WeightedEnsemble .. raw:: html
mean 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
item_id timestamp
H1 1750-01-30 04:00:00 651.894812 588.827473 619.617799 635.176787 644.857577 652.266072 659.141156 667.313614 680.034245 708.517363
1750-01-30 05:00:00 582.814912 519.843875 550.686570 566.349427 575.958530 583.168960 589.946450 598.111889 610.824228 639.637012
1750-01-30 06:00:00 545.348488 481.050404 512.119764 528.114546 538.100969 545.693823 552.784127 561.095868 574.173579 603.317978
1750-01-30 07:00:00 510.316760 446.275189 476.975267 493.105379 503.063026 510.487748 517.853523 526.391973 539.076679 568.587399
1750-01-30 08:00:00 486.029493 421.116498 452.140874 467.894189 478.190329 485.763614 492.912239 502.309232 515.372847 545.145625
AutoGluon produces a *probabilistic* forecast: in addition to predicting the mean (expected value) of the time series in the future, models also provide the quantiles of the forecast distribution. The quantile forecasts give us an idea about the range of possible outcomes. For example, if the ``"0.1"`` quantile is equal to ``500.0``, it means that the model predicts a 10% chance that the target value will be below ``500.0``. We will now visualize the forecast and the actually observed values for one of the time series in the dataset. We plot the mean forecast, as well as the 10% and 90% quantiles to show the range of potential outcomes. .. code:: python import matplotlib.pyplot as plt # TimeSeriesDataFrame can also be loaded directly from a file test_data = TimeSeriesDataFrame.from_path("https://autogluon.s3.amazonaws.com/datasets/timeseries/m4_hourly_subset/test.csv") plt.figure(figsize=(20, 3)) item_id = "H1" y_past = train_data.loc[item_id]["target"] y_pred = predictions.loc[item_id] y_test = test_data.loc[item_id]["target"][-48:] plt.plot(y_past[-200:], label="Past time series values") plt.plot(y_pred["mean"], label="Mean forecast") plt.plot(y_test, label="Future time series values") plt.fill_between( y_pred.index, y_pred["0.1"], y_pred["0.9"], color="red", alpha=0.1, label=f"10%-90% confidence interval" ) plt.legend(); .. parsed-literal:: :class: output Loaded data from: https://autogluon.s3.amazonaws.com/datasets/timeseries/m4_hourly_subset/test.csv | Columns = 3 / 3 | Rows = 157660 -> 157660 .. figure:: output_forecasting-quickstart_a33e23_11_1.png Evaluating the performance of different models ---------------------------------------------- We can view the performance of each model AutoGluon has trained via the ``leaderboard()`` method. We provide the test data set to the leaderboard function to see how well our fitted models are doing on the unseen test data. The leaderboard also includes the validation scores computed on the internal validation dataset. In AutoGluon leaderboards, higher scores always correspond to better predictive performance. Therefore our sMAPE scores are multiplied by ``-1``, such that higher “negative sMAPE”s correspond to more accurate forecasts. .. code:: python # The test score is computed using the last # prediction_length=48 timesteps of each time series in test_data predictor.leaderboard(test_data, silent=True) .. parsed-literal:: :class: output Additional data provided, testing on additional data. Resulting leaderboard will be sorted according to test score (`score_test`). .. raw:: html
model score_test score_val pred_time_test pred_time_val fit_time_marginal fit_order
0 WeightedEnsemble -0.101776 -0.106220 6.883783 13.080188 8.301532 9
1 AutoGluonTabular -0.105318 -0.108919 4.409197 3.922496 48.422069 7
2 DeepAR -0.117380 -0.129139 2.741045 2.983818 109.235588 8
3 SeasonalNaive -0.119063 -0.168566 0.646213 0.421659 0.002699 2
4 Theta -0.194352 -0.223630 17.385822 16.715684 0.001469 4
5 AutoETS -0.195432 -0.238137 129.020595 123.438297 0.001551 6
6 ETS -0.217874 -0.269993 37.340832 36.005524 0.001670 3
7 Naive -0.453291 -0.434068 0.193318 6.173874 0.003470 1
8 ARIMA -0.518139 -0.526885 22.588100 20.666080 0.001480 5
Summary ------- We used ``autogluon.timeseries`` to make probabilistic multi-step forecasts on the M4 Hourly dataset. Check out :ref:`sec_forecasting_indepth` to learn about the advanced capabilities of AutoGluon for time series forecasting.