Object Detection - Quick Start¶
Note: AutoGluon ObjectDetector will be deprecated in v0.7. Please try our AutoGluon MultiModalPredictor for more functionalities and better support for your object detection need.
Object detection is the process of identifying and localizing objects in an image and is an important task in computer vision. Follow this tutorial to learn how to use AutoGluon for object detection.
Tip: If you are new to AutoGluon, review Image Prediction - Quick Start first to learn the basics of the AutoGluon API.
Our goal is to detect motorbike in images by YOLOv3 model. A tiny dataset is collected from VOC dataset, which only contains the motorbike category. The model pretrained on the COCO dataset is used to fine-tune our small dataset. With the help of AutoGluon, we are able to try many models with different hyperparameters automatically, and return the best one as our final model.
To start, import ObjectDetector:
from autogluon.vision import ObjectDetector
/home/ci/opt/venv/lib/python3.8/site-packages/gluoncv/__init__.py:40: UserWarning: Both mxnet==1.9.1 and torch==1.12.1+cu102 are installed. You might encounter increased GPU memory footprint if both framework are used at the same time. warnings.warn(f'Both mxnet=={mx.__version__} and torch=={torch.__version__} are installed. ' INFO:matplotlib.font_manager:generated new fontManager INFO:torch.distributed.nn.jit.instantiator:Created a temporary directory at /tmp/tmpbnttl5_9 INFO:torch.distributed.nn.jit.instantiator:Writing /tmp/tmpbnttl5_9/_remote_module_non_scriptable.py INFO:root:Generating grammar tables from /usr/lib/python3.8/lib2to3/Grammar.txt INFO:root:Generating grammar tables from /usr/lib/python3.8/lib2to3/PatternGrammar.txt
Tiny_motorbike Dataset¶
We collect a toy dataset for detecting motorbikes in images. From the VOC dataset, images are randomly selected for training, validation, and testing - 120 images for training, 50 images for validation, and 50 for testing. This tiny dataset follows the same format as VOC.
Using the commands below, we can download this dataset, which is only
23M. The name of unzipped folder is called tiny_motorbike
. Anyway,
the task dataset helper can perform the download and extraction
automatically, and load the dataset according to the detection formats.
url = 'https://autogluon.s3.amazonaws.com/datasets/tiny_motorbike.zip'
dataset_train = ObjectDetector.Dataset.from_voc(url, splits='trainval')
Downloading /home/ci/.gluoncv/archive/tiny_motorbike.zip from https://autogluon.s3.amazonaws.com/datasets/tiny_motorbike.zip...
21273KB [00:01, 18609.48KB/s]
tiny_motorbike/
├── Annotations/
├── ImageSets/
└── JPEGImages/
Fit Models by AutoGluon¶
In this section, we demonstrate how to apply AutoGluon to fit our detection models. We use mobilenet as the backbone for the YOLOv3 model. Two different learning rates are used to fine-tune the network. The best model is the one that obtains the best performance on the validation dataset. You can also try using more networks and hyperparameters to create a larger searching space.
We fit
a classifier using AutoGluon as follows. In each experiment
(one trial in our searching space), we train the model for 5 epochs to
avoid bursting our tutorial runtime.
time_limit = 60*30 # at most 0.5 hour
detector = ObjectDetector()
hyperparameters = {'epochs': 5, 'batch_size': 8}
hyperparameter_tune_kwargs={'num_trials': 2}
detector.fit(dataset_train, time_limit=time_limit, hyperparameters=hyperparameters, hyperparameter_tune_kwargs=hyperparameter_tune_kwargs)
=============================================================================
WARNING: ObjectDetector is deprecated as of v0.4.0 and may contain various bugs and issues!
In a future release ObjectDetector may be entirely reworked to use Torch as a backend.
This future change will likely be API breaking.Users should ensure they update their code that depends on ObjectDetector when upgrading to future AutoGluon releases.
For more information, refer to ObjectDetector refactor GitHub issue: https://github.com/autogluon/autogluon/issues/1559
=============================================================================
The number of requested GPUs is greater than the number of available GPUs.Reduce the number to 1
Randomly split train_data into train[155]/validation[15] splits.
Starting HPO experiments
0%| | 0/2 [00:00<?, ?it/s]
INFO:SSDEstimator:modified configs(<old> != <new>): {
INFO:SSDEstimator:root.train.early_stop_max_value 1.0 != inf
INFO:SSDEstimator:root.train.early_stop_baseline 0.0 != -inf
INFO:SSDEstimator:root.train.epochs 20 != 5
INFO:SSDEstimator:root.train.seed 233 != 280
INFO:SSDEstimator:root.train.batch_size 16 != 8
INFO:SSDEstimator:root.train.early_stop_patience -1 != 10
INFO:SSDEstimator:root.valid.batch_size 16 != 8
INFO:SSDEstimator:root.ssd.base_network vgg16_atrous != resnet50_v1
INFO:SSDEstimator:root.ssd.data_shape 300 != 512
INFO:SSDEstimator:root.num_workers 4 != 8
INFO:SSDEstimator:root.dataset voc_tiny != auto
INFO:SSDEstimator:root.dataset_root ~/.mxnet/datasets/ != auto
INFO:SSDEstimator:root.gpus (0, 1, 2, 3) != (0,)
INFO:SSDEstimator:}
INFO:SSDEstimator:Saved config to /home/ci/autogluon/docs/_build/eval/tutorials/object_detection/d19552df/.trial_0/config.yaml
INFO:SSDEstimator:Using transfer learning from ssd_512_resnet50_v1_coco, the other network parameters are ignored.
INFO:root:Model file not found. Downloading.
Downloading /home/ci/.mxnet/models/ssd_512_resnet50_v1_coco-c4835162.zip from https://apache-mxnet.s3-accelerate.dualstack.amazonaws.com/gluon/models/ssd_512_resnet50_v1_coco-c4835162.zip...
0%| | 0/181188 [00:00<?, ?KB/s][A
4%|▍ | 7075/181188 [00:00<00:03, 57507.10KB/s][A
9%|▉ | 15965/181188 [00:00<00:02, 74371.23KB/s][A
13%|█▎ | 23562/181188 [00:00<00:02, 72965.24KB/s][A
17%|█▋ | 30954/181188 [00:00<00:02, 71246.42KB/s][A
22%|██▏ | 39941/181188 [00:00<00:01, 77631.65KB/s][A
26%|██▋ | 47770/181188 [00:00<00:01, 75585.42KB/s][A
31%|███ | 55664/181188 [00:00<00:01, 75868.56KB/s][A
36%|███▌ | 64470/181188 [00:00<00:01, 79604.67KB/s][A
40%|███▉ | 72467/181188 [00:00<00:01, 78307.10KB/s][A
45%|████▍ | 80840/181188 [00:01<00:01, 79868.36KB/s][A
49%|████▉ | 89049/181188 [00:01<00:01, 80532.03KB/s][A
54%|█████▎ | 97120/181188 [00:01<00:01, 79055.59KB/s][A
59%|█████▊ | 106090/181188 [00:01<00:00, 81330.91KB/s][A
63%|██████▎ | 114261/181188 [00:01<00:00, 81439.95KB/s][A
68%|██████▊ | 122413/181188 [00:01<00:00, 79057.18KB/s][A
72%|███████▏ | 131323/181188 [00:01<00:00, 81802.16KB/s][A
77%|███████▋ | 139524/181188 [00:01<00:00, 80135.83KB/s][A
81%|████████▏ | 147556/181188 [00:01<00:00, 79071.56KB/s][A
86%|████████▋ | 156561/181188 [00:01<00:00, 82260.20KB/s][A
91%|█████████ | 164807/181188 [00:02<00:00, 80101.41KB/s][A
181189KB [00:02, 78817.91KB/s]
INFO:SSDEstimator:Start training from [Epoch 0]
INFO:SSDEstimator:[Epoch 0] Training cost: 10.799334, CrossEntropy=3.633113, SmoothL1=1.068825
INFO:SSDEstimator:[Epoch 0] Validation:
cow=nan
bicycle=0.0
pottedplant=nan
dog=nan
bus=nan
chair=nan
car=nan
person=0.9005009527321901
motorbike=0.6273175512936213
boat=nan
mAP=0.5092728346752705
INFO:SSDEstimator:[Epoch 0] Current best map: 0.509273 vs previous 0.000000, saved to /home/ci/autogluon/docs/_build/eval/tutorials/object_detection/d19552df/.trial_0/best_checkpoint.pkl
INFO:SSDEstimator:[Epoch 1] Training cost: 7.373127, CrossEntropy=2.687994, SmoothL1=1.193810
INFO:SSDEstimator:[Epoch 1] Validation:
cow=nan
bicycle=0.0
pottedplant=nan
dog=nan
bus=nan
chair=nan
car=nan
person=0.8696984130420664
motorbike=0.74723036819811
boat=nan
mAP=0.5389762604133921
INFO:SSDEstimator:[Epoch 1] Current best map: 0.538976 vs previous 0.509273, saved to /home/ci/autogluon/docs/_build/eval/tutorials/object_detection/d19552df/.trial_0/best_checkpoint.pkl
INFO:SSDEstimator:[Epoch 2] Training cost: 7.940075, CrossEntropy=2.456032, SmoothL1=1.189903
INFO:SSDEstimator:[Epoch 2] Validation:
cow=nan
bicycle=0.0
pottedplant=nan
dog=nan
bus=nan
chair=nan
car=nan
person=0.7404796629395558
motorbike=0.7834428198064562
boat=nan
mAP=0.5079741609153373
INFO:SSDEstimator:[Epoch 3] Training cost: 7.437140, CrossEntropy=2.368113, SmoothL1=1.006770
INFO:SSDEstimator:[Epoch 3] Validation:
cow=nan
bicycle=0.0
pottedplant=nan
dog=nan
bus=nan
chair=nan
car=nan
person=0.7531285707756296
motorbike=0.7179411764705883
boat=nan
mAP=0.4903565824154059
INFO:SSDEstimator:[Epoch 4] Training cost: 7.490384, CrossEntropy=2.372213, SmoothL1=1.045343
INFO:SSDEstimator:[Epoch 4] Validation:
cow=nan
bicycle=0.0
pottedplant=nan
dog=nan
bus=nan
chair=nan
car=nan
person=0.8210520885470174
motorbike=0.8027942380883557
boat=nan
mAP=0.5412821088784577
INFO:SSDEstimator:[Epoch 4] Current best map: 0.541282 vs previous 0.538976, saved to /home/ci/autogluon/docs/_build/eval/tutorials/object_detection/d19552df/.trial_0/best_checkpoint.pkl
INFO:SSDEstimator:Applying the state from the best checkpoint...
INFO:root:Model file not found. Downloading.
Downloading /home/ci/.mxnet/models/resnet50_v1-cc729d95.zip from https://apache-mxnet.s3-accelerate.dualstack.amazonaws.com/gluon/models/resnet50_v1-cc729d95.zip...
0%| | 0/57421 [00:00<?, ?KB/s][A
0%| | 136/57421 [00:00<00:51, 1110.65KB/s][A
1%|▏ | 747/57421 [00:00<00:16, 3339.43KB/s][A
5%|▌ | 3145/57421 [00:00<00:05, 10585.77KB/s][A
17%|█▋ | 10011/57421 [00:00<00:01, 30523.98KB/s][A
27%|██▋ | 15289/57421 [00:00<00:01, 37844.92KB/s][A
39%|███▉ | 22377/57421 [00:00<00:00, 46339.31KB/s][A
54%|█████▎ | 30797/57421 [00:00<00:00, 57857.01KB/s][A
65%|██████▌ | 37343/57421 [00:00<00:00, 60158.23KB/s][A
80%|████████ | 46061/57421 [00:01<00:00, 65661.71KB/s][A
100%|██████████| 57421/57421 [00:01<00:00, 50348.01KB/s]
Finished, total runtime is 75.83 s
{ 'best_config': { 'dataset': 'auto',
'dataset_root': 'auto',
'estimator': <class 'gluoncv.auto.estimators.ssd.ssd.SSDEstimator'>,
'gpus': [0],
'horovod': False,
'num_workers': 8,
'resume': '',
'save_interval': 1,
'ssd': { 'amp': False,
'base_network': 'resnet50_v1',
'data_shape': 512,
'filters': None,
'nms_thresh': 0.45,
'nms_topk': 400,
'ratios': ( [1, 2, 0.5],
[1, 2, 0.5, 3, 0.3333333333333333],
[1, 2, 0.5, 3, 0.3333333333333333],
[1, 2, 0.5, 3, 0.3333333333333333],
[1, 2, 0.5],
[1, 2, 0.5]),
'sizes': (30, 60, 111, 162, 213, 264, 315),
'steps': (8, 16, 32, 64, 100, 300),
'syncbn': False,
'transfer': 'ssd_512_resnet50_v1_coco'},
'train': { 'batch_size': 8,
'dali': False,
'early_stop_baseline': -inf,
'early_stop_max_value': inf,
'early_stop_min_delta': 0.001,
'early_stop_patience': 10,
'epochs': 5,
'log_interval': 100,
'lr': 0.001,
'lr_decay': 0.1,
'lr_decay_epoch': (160, 200),
'momentum': 0.9,
'seed': 280,
'start_epoch': 0,
'wd': 0.0005},
'valid': { 'batch_size': 8,
'iou_thresh': 0.5,
'metric': 'voc07',
'val_interval': 1}},
'total_time': 75.8325526714325,
'train_map': 0.5825324777211787,
'valid_map': 0.5412821088784577}
<autogluon.vision.detector.detector.ObjectDetector at 0x7f50cadec4f0>
Note that num_trials=2
above is only used to speed up the tutorial.
In normal practice, it is common to only use time_limit
and drop
num_trials
. Also note that hyperparameter tuning defaults to random
search.
After fitting, AutoGluon automatically returns the best model among all models in the searching space. From the output, we know the best model is the one trained with the second learning rate. To see how well the returned model performed on test dataset, call detector.evaluate().
dataset_test = ObjectDetector.Dataset.from_voc(url, splits='test')
test_map = detector.evaluate(dataset_test)
print("mAP on test dataset: {}".format(test_map[1][-1]))
tiny_motorbike/
├── Annotations/
├── ImageSets/
└── JPEGImages/
mAP on test dataset: 0.10123572737002863
Below, we randomly select an image from test dataset and show the
predicted class, box and probability over the origin image, stored in
predict_class
, predict_rois
and predict_score
columns,
respectively. You can interpret predict_rois
as a dict of (xmin
,
ymin
, xmax
, ymax
) proportional to original image size.
image_path = dataset_test.iloc[0]['image']
result = detector.predict(image_path)
print(result)
predict_class predict_score 0 person 0.980261 1 motorbike 0.354596 2 motorbike 0.212239 3 bicycle 0.138898 4 person 0.119077 .. ... ... 88 person 0.026122 89 person 0.025922 90 person 0.025855 91 person 0.025837 92 person 0.025833 predict_rois 0 {'xmin': 0.40015068650245667, 'ymin': 0.303383... 1 {'xmin': 0.3278483748435974, 'ymin': 0.4147778... 2 {'xmin': 0.0, 'ymin': 0.6364853382110596, 'xma... 3 {'xmin': 0.3278483748435974, 'ymin': 0.4147778... 4 {'xmin': 0.6374019980430603, 'ymin': 0.0709396... .. ... 88 {'xmin': 0.9967464804649353, 'ymin': 0.8361742... 89 {'xmin': 1.0, 'ymin': 0.5882136225700378, 'xma... 90 {'xmin': 0.8325201272964478, 'ymin': 0.2764889... 91 {'xmin': 0.655297577381134, 'ymin': 0.07953304... 92 {'xmin': 0.9939085245132446, 'ymin': 0.8400411... [93 rows x 3 columns]
Prediction with multiple images is permitted:
bulk_result = detector.predict(dataset_test)
print(bulk_result)
predict_class predict_score 0 person 0.980261 1 motorbike 0.354596 2 motorbike 0.212239 3 bicycle 0.138898 4 person 0.119077 ... ... ... 3930 person 0.029939 3931 person 0.029661 3932 person 0.029611 3933 person 0.029426 3934 motorbike 0.029167 predict_rois 0 {'xmin': 0.40015068650245667, 'ymin': 0.303383... 1 {'xmin': 0.3278483748435974, 'ymin': 0.4147778... 2 {'xmin': 0.0, 'ymin': 0.6364853382110596, 'xma... 3 {'xmin': 0.3278483748435974, 'ymin': 0.4147778... 4 {'xmin': 0.6374019980430603, 'ymin': 0.0709396... ... ... 3930 {'xmin': 0.045067280530929565, 'ymin': 0.0, 'x... 3931 {'xmin': 0.18716202676296234, 'ymin': 0.0, 'xm... 3932 {'xmin': 0.3877221345901489, 'ymin': 0.0054001... 3933 {'xmin': 0.511600136756897, 'ymin': 0.29419773... 3934 {'xmin': 0.828145444393158, 'ymin': 0.12269252... image 0 /home/ci/.gluoncv/datasets/tiny_motorbike/tiny... 1 /home/ci/.gluoncv/datasets/tiny_motorbike/tiny... 2 /home/ci/.gluoncv/datasets/tiny_motorbike/tiny... 3 /home/ci/.gluoncv/datasets/tiny_motorbike/tiny... 4 /home/ci/.gluoncv/datasets/tiny_motorbike/tiny... ... ... 3930 /home/ci/.gluoncv/datasets/tiny_motorbike/tiny... 3931 /home/ci/.gluoncv/datasets/tiny_motorbike/tiny... 3932 /home/ci/.gluoncv/datasets/tiny_motorbike/tiny... 3933 /home/ci/.gluoncv/datasets/tiny_motorbike/tiny... 3934 /home/ci/.gluoncv/datasets/tiny_motorbike/tiny... [3935 rows x 4 columns]
We can also save the trained model, and use it later.
Warning
ObjectDetector.load()
used pickle
module implicitly, which is
known to be insecure. It is possible to construct malicious pickle
data which will execute arbitrary code during unpickling. Never load
data that could have come from an untrusted source, or that could
have been tampered with. Only load data you trust.
savefile = 'detector.ag'
detector.save(savefile)
new_detector = ObjectDetector.load(savefile)
/home/ci/opt/venv/lib/python3.8/site-packages/mxnet/gluon/block.py:1784: UserWarning: Cannot decide type for the following arguments. Consider providing them as input:
data: None
input_sym_arg_type = in_param.infer_type()[0]