.. _sec_object_detection_quick: Object Detection - Quick Start ============================== Object detection is the process of identifying and localizing objects in an image and is an important task in computer vision. Follow this tutorial to learn how to use AutoGluon for object detection. **Tip**: If you are new to AutoGluon, review :ref:`sec_imgquick` first to learn the basics of the AutoGluon API. Our goal is to detect motorbike in images by `YOLOv3 model `__. A tiny dataset is collected from VOC dataset, which only contains the motorbike category. The model pretrained on the COCO dataset is used to fine-tune our small dataset. With the help of AutoGluon, we are able to try many models with different hyperparameters automatically, and return the best one as our final model. To start, import ObjectDetector: .. code:: python from autogluon.vision import ObjectDetector .. parsed-literal:: :class: output /var/lib/jenkins/miniconda3/envs/autogluon-tutorial-object-detection-v3/lib/python3.9/site-packages/gluoncv/__init__.py:40: UserWarning: Both `mxnet==1.9.1` and `torch==1.11.0+cu102` are installed. You might encounter increased GPU memory footprint if both framework are used at the same time. warnings.warn(f'Both `mxnet=={mx.__version__}` and `torch=={torch.__version__}` are installed. ' Tiny\_motorbike Dataset ----------------------- We collect a toy dataset for detecting motorbikes in images. From the VOC dataset, images are randomly selected for training, validation, and testing - 120 images for training, 50 images for validation, and 50 for testing. This tiny dataset follows the same format as VOC. Using the commands below, we can download this dataset, which is only 23M. The name of unzipped folder is called ``tiny_motorbike``. Anyway, the task dataset helper can perform the download and extraction automatically, and load the dataset according to the detection formats. .. code:: python url = 'https://autogluon.s3.amazonaws.com/datasets/tiny_motorbike.zip' dataset_train = ObjectDetector.Dataset.from_voc(url, splits='trainval') .. parsed-literal:: :class: output tiny_motorbike/ ├── Annotations/ ├── ImageSets/ └── JPEGImages/ Fit Models by AutoGluon ----------------------- In this section, we demonstrate how to apply AutoGluon to fit our detection models. We use mobilenet as the backbone for the YOLOv3 model. Two different learning rates are used to fine-tune the network. The best model is the one that obtains the best performance on the validation dataset. You can also try using more networks and hyperparameters to create a larger searching space. We ``fit`` a classifier using AutoGluon as follows. In each experiment (one trial in our searching space), we train the model for 5 epochs to avoid bursting our tutorial runtime. .. code:: python time_limit = 60*30 # at most 0.5 hour detector = ObjectDetector() hyperparameters = {'epochs': 5, 'batch_size': 8} hyperparameter_tune_kwargs={'num_trials': 2} detector.fit(dataset_train, time_limit=time_limit, hyperparameters=hyperparameters, hyperparameter_tune_kwargs=hyperparameter_tune_kwargs) .. parsed-literal:: :class: output ============================================================================= WARNING: ObjectDetector is deprecated as of v0.4.0 and may contain various bugs and issues! In a future release ObjectDetector may be entirely reworked to use Torch as a backend. This future change will likely be API breaking.Users should ensure they update their code that depends on ObjectDetector when upgrading to future AutoGluon releases. For more information, refer to ObjectDetector refactor GitHub issue: https://github.com/awslabs/autogluon/issues/1559 ============================================================================= The number of requested GPUs is greater than the number of available GPUs.Reduce the number to 1 Randomly split train_data into train[161]/validation[9] splits. Starting HPO experiments .. parsed-literal:: :class: output 0%| | 0/2 [00:00 != ): { root.ssd.data_shape 300 != 512 root.ssd.base_network vgg16_atrous != resnet50_v1 root.dataset_root ~/.mxnet/datasets/ != auto root.train.epochs 20 != 5 root.train.early_stop_baseline 0.0 != -inf root.train.early_stop_patience -1 != 10 root.train.seed 233 != 639 root.train.early_stop_max_value 1.0 != inf root.train.batch_size 16 != 8 root.valid.batch_size 16 != 8 root.dataset voc_tiny != auto root.num_workers 4 != 8 root.gpus (0, 1, 2, 3) != (0,) } Saved config to /var/lib/jenkins/workspace/workspace/autogluon-tutorial-object-detection-v3/docs/_build/eval/tutorials/object_detection/58c50b4b/.trial_0/config.yaml Using transfer learning from ssd_512_resnet50_v1_coco, the other network parameters are ignored. Start training from [Epoch 0] [Epoch 0] Training cost: 12.044612, CrossEntropy=3.582205, SmoothL1=1.077815 [Epoch 0] Validation: boat=nan cow=nan dog=nan person=0.7954022988505749 chair=nan bicycle=nan pottedplant=nan motorbike=0.36910691818856656 car=0.0 bus=nan mAP=0.3881697390130472 [Epoch 0] Current best map: 0.388170 vs previous 0.000000, saved to /var/lib/jenkins/workspace/workspace/autogluon-tutorial-object-detection-v3/docs/_build/eval/tutorials/object_detection/58c50b4b/.trial_0/best_checkpoint.pkl [Epoch 1] Training cost: 8.080611, CrossEntropy=2.809763, SmoothL1=1.234455 [Epoch 1] Validation: boat=nan cow=nan dog=nan person=0.8935064935064936 chair=nan bicycle=nan pottedplant=nan motorbike=0.6428296919736363 car=0.5454545454545455 bus=nan mAP=0.6939302436448918 [Epoch 1] Current best map: 0.693930 vs previous 0.388170, saved to /var/lib/jenkins/workspace/workspace/autogluon-tutorial-object-detection-v3/docs/_build/eval/tutorials/object_detection/58c50b4b/.trial_0/best_checkpoint.pkl [Epoch 2] Training cost: 7.943115, CrossEntropy=2.501885, SmoothL1=1.078471 [Epoch 2] Validation: boat=nan cow=nan dog=nan person=1.0000000000000002 chair=nan bicycle=nan pottedplant=nan motorbike=0.8181868405192619 car=0.8484848484848483 bus=nan mAP=0.88889056300137 [Epoch 2] Current best map: 0.888891 vs previous 0.693930, saved to /var/lib/jenkins/workspace/workspace/autogluon-tutorial-object-detection-v3/docs/_build/eval/tutorials/object_detection/58c50b4b/.trial_0/best_checkpoint.pkl [Epoch 3] Training cost: 7.942341, CrossEntropy=2.266479, SmoothL1=0.989386 [Epoch 3] Validation: boat=nan cow=nan dog=nan person=0.7020767450595522 chair=nan bicycle=nan pottedplant=nan motorbike=0.8978864272981922 car=0.45454545454545464 bus=nan mAP=0.684836208967733 [Epoch 4] Training cost: 7.868770, CrossEntropy=2.138340, SmoothL1=0.938136 [Epoch 4] Validation: boat=nan cow=nan dog=nan person=0.9772727272727275 chair=nan bicycle=nan pottedplant=nan motorbike=0.7875993132910128 car=0.6153846153846153 bus=nan mAP=0.7934188853161186 Applying the state from the best checkpoint... Finished, total runtime is 70.68 s { 'best_config': { 'dataset': 'auto', 'dataset_root': 'auto', 'estimator': , 'gpus': [0], 'horovod': False, 'num_workers': 8, 'resume': '', 'save_interval': 1, 'ssd': { 'amp': False, 'base_network': 'resnet50_v1', 'data_shape': 512, 'filters': None, 'nms_thresh': 0.45, 'nms_topk': 400, 'ratios': ( [1, 2, 0.5], [1, 2, 0.5, 3, 0.3333333333333333], [1, 2, 0.5, 3, 0.3333333333333333], [1, 2, 0.5, 3, 0.3333333333333333], [1, 2, 0.5], [1, 2, 0.5]), 'sizes': (30, 60, 111, 162, 213, 264, 315), 'steps': (8, 16, 32, 64, 100, 300), 'syncbn': False, 'transfer': 'ssd_512_resnet50_v1_coco'}, 'train': { 'batch_size': 8, 'dali': False, 'early_stop_baseline': -inf, 'early_stop_max_value': inf, 'early_stop_min_delta': 0.001, 'early_stop_patience': 10, 'epochs': 5, 'log_interval': 100, 'lr': 0.001, 'lr_decay': 0.1, 'lr_decay_epoch': (160, 200), 'momentum': 0.9, 'seed': 639, 'start_epoch': 0, 'wd': 0.0005}, 'valid': { 'batch_size': 8, 'iou_thresh': 0.5, 'metric': 'voc07', 'val_interval': 1}}, 'total_time': 70.67626285552979, 'train_map': 0.7875849538160618, 'valid_map': 0.88889056300137} .. parsed-literal:: :class: output Note that ``num_trials=2`` above is only used to speed up the tutorial. In normal practice, it is common to only use ``time_limit`` and drop ``num_trials``. Also note that hyperparameter tuning defaults to random search. After fitting, AutoGluon automatically returns the best model among all models in the searching space. From the output, we know the best model is the one trained with the second learning rate. To see how well the returned model performed on test dataset, call detector.evaluate(). .. code:: python dataset_test = ObjectDetector.Dataset.from_voc(url, splits='test') test_map = detector.evaluate(dataset_test) print("mAP on test dataset: {}".format(test_map[1][-1])) .. parsed-literal:: :class: output tiny_motorbike/ ├── Annotations/ ├── ImageSets/ └── JPEGImages/ mAP on test dataset: 0.025391932225852478 Below, we randomly select an image from test dataset and show the predicted class, box and probability over the origin image, stored in ``predict_class``, ``predict_rois`` and ``predict_score`` columns, respectively. You can interpret ``predict_rois`` as a dict of (``xmin``, ``ymin``, ``xmax``, ``ymax``) proportional to original image size. .. code:: python image_path = dataset_test.iloc[0]['image'] result = detector.predict(image_path) print(result) .. parsed-literal:: :class: output predict_class predict_score \ 0 person 0.974653 1 motorbike 0.944522 2 car 0.570145 3 person 0.162251 4 car 0.138353 .. ... ... 71 car 0.032979 72 motorbike 0.032574 73 person 0.032338 74 car 0.032276 75 motorbike 0.032164 predict_rois 0 {'xmin': 0.40379223227500916, 'ymin': 0.279169... 1 {'xmin': 0.3315899074077606, 'ymin': 0.4289079... 2 {'xmin': 0.0005976061220280826, 'ymin': 0.6380... 3 {'xmin': 0.6507402658462524, 'ymin': 0.0071541... 4 {'xmin': 0.7942018508911133, 'ymin': 0.8768404... .. ... 71 {'xmin': 0.027659373357892036, 'ymin': 0.36514... 72 {'xmin': 0.7484190464019775, 'ymin': 0.8785464... 73 {'xmin': 0.30867108702659607, 'ymin': 0.305013... 74 {'xmin': 0.0, 'ymin': 0.6255235075950623, 'xma... 75 {'xmin': 0.3157336711883545, 'ymin': 0.4645764... [76 rows x 3 columns] Prediction with multiple images is permitted: .. code:: python bulk_result = detector.predict(dataset_test) print(bulk_result) .. parsed-literal:: :class: output predict_class predict_score \ 0 person 0.974653 1 motorbike 0.944522 2 car 0.570145 3 person 0.162251 4 car 0.138353 ... ... ... 3351 motorbike 0.034022 3352 person 0.033459 3353 person 0.033070 3354 person 0.032404 3355 person 0.032285 predict_rois \ 0 {'xmin': 0.40379223227500916, 'ymin': 0.279169... 1 {'xmin': 0.3315899074077606, 'ymin': 0.4289079... 2 {'xmin': 0.0005976061220280826, 'ymin': 0.6380... 3 {'xmin': 0.6507402658462524, 'ymin': 0.0071541... 4 {'xmin': 0.7942018508911133, 'ymin': 0.8768404... ... ... 3351 {'xmin': 0.5266619324684143, 'ymin': 0.3252114... 3352 {'xmin': 0.2939976155757904, 'ymin': 0.0575568... 3353 {'xmin': 0.35572755336761475, 'ymin': 0.156040... 3354 {'xmin': 0.212220698595047, 'ymin': 0.35478591... 3355 {'xmin': 0.22767341136932373, 'ymin': 0.266247... image 0 /var/lib/jenkins/.gluoncv/datasets/tiny_motorb... 1 /var/lib/jenkins/.gluoncv/datasets/tiny_motorb... 2 /var/lib/jenkins/.gluoncv/datasets/tiny_motorb... 3 /var/lib/jenkins/.gluoncv/datasets/tiny_motorb... 4 /var/lib/jenkins/.gluoncv/datasets/tiny_motorb... ... ... 3351 /var/lib/jenkins/.gluoncv/datasets/tiny_motorb... 3352 /var/lib/jenkins/.gluoncv/datasets/tiny_motorb... 3353 /var/lib/jenkins/.gluoncv/datasets/tiny_motorb... 3354 /var/lib/jenkins/.gluoncv/datasets/tiny_motorb... 3355 /var/lib/jenkins/.gluoncv/datasets/tiny_motorb... [3356 rows x 4 columns] We can also save the trained model, and use it later. .. code:: python savefile = 'detector.ag' detector.save(savefile) new_detector = ObjectDetector.load(savefile) .. parsed-literal:: :class: output /var/lib/jenkins/miniconda3/envs/autogluon-tutorial-object-detection-v3/lib/python3.9/site-packages/mxnet/gluon/block.py:1784: UserWarning: Cannot decide type for the following arguments. Consider providing them as input: data: None input_sym_arg_type = in_param.infer_type()[0]