Searchable Objects

When defining custom Python objects such as network architectures, or specialized optimizers, it may be hard to decide what values to set for all of their attributes. AutoGluon provides an API that allows you to instead specify a search space of possible values to consider for such attributes, within which the optimal value will be automatically searched for at runtime. This tutorial demonstrates how easy this is to do, without having to modify your existing code at all!

Example for Constructing a Network

This tutorial covers an example of selecting a neural network’s architecture as a hyperparameter optimization (HPO) task. If you are interested in efficient neural architecture search (NAS), please refer to this other tutorial instead: sec_proxyless_ .

CIFAR ResNet in GluonCV

GluonCV provides CIFARResNet, which allow user to specify how many layers at each stage. For example, we can construct a CIFAR ResNet with only 1 layer per stage:

import pickle
from gluoncv.model_zoo.cifarresnet import CIFARResNetV1, CIFARBasicBlockV1

layers = [1, 1, 1]
channels = [16, 16, 32, 64]
net = CIFARResNetV1(CIFARBasicBlockV1, layers, channels)
/var/lib/jenkins/workspace/workspace/autogluon-tutorial-course-v3/venv/lib/python3.7/site-packages/gluoncv/__init__.py:40: UserWarning: Both mxnet==1.7.0 and torch==1.7.1+cu101 are installed. You might encounter increased GPU memory footprint if both framework are used at the same time.
  warnings.warn(f'Both mxnet=={mx.__version__} and torch=={torch.__version__} are installed. '

We can visualize the network:

import autogluon.core as ag
from autogluon.vision.utils import plot_network

plot_network(net, (1, 3, 32, 32))
../../_images/output_object_d3e86d_3_0.svg

Searchable Network Architecture Using AutoGluon Object

autogluon.obj() enables customized search space to any user defined class. It can also be used within autogluon.Categorical() if you have multiple networks to choose from.

@ag.obj(
    nstage1=ag.space.Int(2, 4),
    nstage2=ag.space.Int(2, 4),
)
class MyCifarResNet(CIFARResNetV1):
    def __init__(self, nstage1, nstage2):
        nstage3 = 9 - nstage1 - nstage2
        layers = [nstage1, nstage2, nstage3]
        channels = [16, 16, 32, 64]
        super().__init__(CIFARBasicBlockV1, layers=layers, channels=channels)

Create one network instance and print the configuration space:

mynet=MyCifarResNet()
print(mynet.cs)
Configuration space object:
  Hyperparameters:
    nstage1, Type: UniformInteger, Range: [2, 4], Default: 3
    nstage2, Type: UniformInteger, Range: [2, 4], Default: 3

We can also overwrite existing search spaces:

mynet1 = MyCifarResNet(nstage1=1,
                       nstage2=ag.space.Int(5, 10))
print(mynet1.cs)
Configuration space object:
  Hyperparameters:
    nstage2, Type: UniformInteger, Range: [5, 10], Default: 8

Decorate Existing Class

We can also use autogluon.obj() to easily decorate any existing classes. For example, if we want to search learning rate and weight decay for Adam optimizer, we only need to add a decorator:

from mxnet import optimizer as optim
@ag.obj()
class Adam(optim.Adam):
    pass

Then we can create an instance:

myoptim = Adam(learning_rate=ag.Real(1e-2, 1e-1, log=True), wd=ag.Real(1e-5, 1e-3, log=True))
print(myoptim.cs)
Configuration space object:
  Hyperparameters:
    learning_rate, Type: UniformFloat, Range: [0.01, 0.1], Default: 0.0316227766, on log-scale
    wd, Type: UniformFloat, Range: [1e-05, 0.001], Default: 0.0001, on log-scale

Launch Experiments Using AutoGluon Object

AutoGluon Object is compatible with Fit API in AutoGluon tasks, and also works with user-defined training scripts using autogluon.autogluon_register_args(). We can start fitting:

from autogluon.vision import ImagePredictor
classifier = ImagePredictor().fit('cifar10', hyperparameters={'net': mynet, 'optimizer': myoptim, 'epochs': 1}, ngpus_per_trial=1)
time_limit=auto set to time_limit=7200.
Starting fit without HPO
modified configs(<old> != <new>): {
root.train.rec_val_idx ~/.mxnet/datasets/imagenet/rec/val.idx != auto
root.train.rec_train_idx ~/.mxnet/datasets/imagenet/rec/train.idx != auto
root.train.num_training_samples 1281167 != -1
root.train.num_workers 4 != 8
root.train.epochs    10 != 1
root.train.rec_train ~/.mxnet/datasets/imagenet/rec/train.rec != auto
root.train.early_stop_patience -1 != 10
root.train.lr        0.1 != 0.01
root.train.rec_val   ~/.mxnet/datasets/imagenet/rec/val.rec != auto
root.train.early_stop_max_value 1.0 != inf
root.train.batch_size 128 != 16
root.train.early_stop_baseline 0.0 != -inf
root.train.data_dir  ~/.mxnet/datasets/imagenet != auto
root.img_cls.model   resnet50_v1 != resnet50
root.valid.num_workers 4 != 8
root.valid.batch_size 128 != 16
}
Saved config to /var/lib/jenkins/workspace/workspace/autogluon-tutorial-course-v3/docs/_build/eval/tutorials/course/4afab4dc/.trial_0/config.yaml
Start training from [Epoch 0]
Epoch[0] Batch [49] Speed: 73.609623 samples/sec    accuracy=0.131250       lr=0.010000
Epoch[0] Batch [99] Speed: 73.953846 samples/sec    accuracy=0.154375       lr=0.010000
Epoch[0] Batch [149]        Speed: 73.771416 samples/sec    accuracy=0.157917       lr=0.010000
Epoch[0] Batch [199]        Speed: 73.504140 samples/sec    accuracy=0.159375       lr=0.010000
Epoch[0] Batch [249]        Speed: 73.313569 samples/sec    accuracy=0.156750       lr=0.010000
Epoch[0] Batch [299]        Speed: 73.051226 samples/sec    accuracy=0.170000       lr=0.010000
Epoch[0] Batch [349]        Speed: 72.894171 samples/sec    accuracy=0.168750       lr=0.010000
Epoch[0] Batch [399]        Speed: 72.719174 samples/sec    accuracy=0.168750       lr=0.010000
Epoch[0] Batch [449]        Speed: 72.567706 samples/sec    accuracy=0.170139       lr=0.010000
Epoch[0] Batch [499]        Speed: 72.429780 samples/sec    accuracy=0.171875       lr=0.010000
Epoch[0] Batch [549]        Speed: 72.153648 samples/sec    accuracy=0.172500       lr=0.010000
Epoch[0] Batch [599]        Speed: 71.923419 samples/sec    accuracy=0.175000       lr=0.010000
Epoch[0] Batch [649]        Speed: 71.748176 samples/sec    accuracy=0.176346       lr=0.010000
Epoch[0] Batch [699]        Speed: 71.751177 samples/sec    accuracy=0.178929       lr=0.010000
Epoch[0] Batch [749]        Speed: 71.239497 samples/sec    accuracy=0.180250       lr=0.010000
Epoch[0] Batch [799]        Speed: 70.887625 samples/sec    accuracy=0.183281       lr=0.010000
Epoch[0] Batch [849]        Speed: 70.377529 samples/sec    accuracy=0.184338       lr=0.010000
Epoch[0] Batch [899]        Speed: 69.965424 samples/sec    accuracy=0.186667       lr=0.010000
Epoch[0] Batch [949]        Speed: 69.307087 samples/sec    accuracy=0.188224       lr=0.010000
Epoch[0] Batch [999]        Speed: 68.671152 samples/sec    accuracy=0.189562       lr=0.010000
Epoch[0] Batch [1049]       Speed: 68.130965 samples/sec    accuracy=0.190595       lr=0.010000
Epoch[0] Batch [1099]       Speed: 67.409133 samples/sec    accuracy=0.189773       lr=0.010000
Epoch[0] Batch [1149]       Speed: 67.007981 samples/sec    accuracy=0.189565       lr=0.010000
Epoch[0] Batch [1199]       Speed: 66.446417 samples/sec    accuracy=0.190052       lr=0.010000
Epoch[0] Batch [1249]       Speed: 65.992137 samples/sec    accuracy=0.190700       lr=0.010000
Epoch[0] Batch [1299]       Speed: 65.623976 samples/sec    accuracy=0.192115       lr=0.010000
Epoch[0] Batch [1349]       Speed: 65.556607 samples/sec    accuracy=0.193148       lr=0.010000
Epoch[0] Batch [1399]       Speed: 65.955670 samples/sec    accuracy=0.193438       lr=0.010000
Epoch[0] Batch [1449]       Speed: 66.468534 samples/sec    accuracy=0.193578       lr=0.010000
Epoch[0] Batch [1499]       Speed: 66.749608 samples/sec    accuracy=0.194500       lr=0.010000
Epoch[0] Batch [1549]       Speed: 66.845887 samples/sec    accuracy=0.195000       lr=0.010000
Epoch[0] Batch [1599]       Speed: 66.644517 samples/sec    accuracy=0.195898       lr=0.010000
Epoch[0] Batch [1649]       Speed: 66.248934 samples/sec    accuracy=0.196742       lr=0.010000
Epoch[0] Batch [1699]       Speed: 65.678913 samples/sec    accuracy=0.197831       lr=0.010000
Epoch[0] Batch [1749]       Speed: 65.370992 samples/sec    accuracy=0.198607       lr=0.010000
Epoch[0] Batch [1799]       Speed: 65.554665 samples/sec    accuracy=0.199132       lr=0.010000
Epoch[0] Batch [1849]       Speed: 65.884527 samples/sec    accuracy=0.200203       lr=0.010000
Epoch[0] Batch [1899]       Speed: 66.157593 samples/sec    accuracy=0.200855       lr=0.010000
Epoch[0] Batch [1949]       Speed: 66.362573 samples/sec    accuracy=0.201218       lr=0.010000
Epoch[0] Batch [1999]       Speed: 66.492927 samples/sec    accuracy=0.201906       lr=0.010000
Epoch[0] Batch [2049]       Speed: 66.652606 samples/sec    accuracy=0.202409       lr=0.010000
Epoch[0] Batch [2099]       Speed: 66.704572 samples/sec    accuracy=0.203185       lr=0.010000
Epoch[0] Batch [2149]       Speed: 66.438463 samples/sec    accuracy=0.203517       lr=0.010000
Epoch[0] Batch [2199]       Speed: 66.017319 samples/sec    accuracy=0.203977       lr=0.010000
Epoch[0] Batch [2249]       Speed: 65.636090 samples/sec    accuracy=0.204722       lr=0.010000
Epoch[0] Batch [2299]       Speed: 67.803284 samples/sec    accuracy=0.204918       lr=0.010000
Epoch[0] Batch [2349]       Speed: 70.009562 samples/sec    accuracy=0.205559       lr=0.010000
Epoch[0] Batch [2399]       Speed: 71.227305 samples/sec    accuracy=0.206380       lr=0.010000
Epoch[0] Batch [2449]       Speed: 71.841090 samples/sec    accuracy=0.207041       lr=0.010000
Epoch[0] Batch [2499]       Speed: 72.001251 samples/sec    accuracy=0.207300       lr=0.010000
Epoch[0] Batch [2549]       Speed: 72.378897 samples/sec    accuracy=0.207647       lr=0.010000
Epoch[0] Batch [2599]       Speed: 72.539489 samples/sec    accuracy=0.207548       lr=0.010000
Epoch[0] Batch [2649]       Speed: 72.654240 samples/sec    accuracy=0.208090       lr=0.010000
Epoch[0] Batch [2699]       Speed: 72.708417 samples/sec    accuracy=0.208519       lr=0.010000
Epoch[0] Batch [2749]       Speed: 72.662435 samples/sec    accuracy=0.209182       lr=0.010000
Epoch[0] Batch [2799]       Speed: 72.606764 samples/sec    accuracy=0.209955       lr=0.010000
Epoch[0] Batch [2849]       Speed: 72.563571 samples/sec    accuracy=0.210285       lr=0.010000
Epoch[0] Batch [2899]       Speed: 72.568693 samples/sec    accuracy=0.210927       lr=0.010000
Epoch[0] Batch [2949]       Speed: 72.462617 samples/sec    accuracy=0.211462       lr=0.010000
Epoch[0] Batch [2999]       Speed: 72.314121 samples/sec    accuracy=0.212188       lr=0.010000
Epoch[0] Batch [3049]       Speed: 72.224966 samples/sec    accuracy=0.213361       lr=0.010000
Epoch[0] Batch [3099]       Speed: 71.928598 samples/sec    accuracy=0.213589       lr=0.010000
Epoch[0] Batch [3149]       Speed: 71.650627 samples/sec    accuracy=0.213849       lr=0.010000
Epoch[0] Batch [3199]       Speed: 71.605896 samples/sec    accuracy=0.214023       lr=0.010000
Epoch[0] Batch [3249]       Speed: 71.740414 samples/sec    accuracy=0.214981       lr=0.010000
Epoch[0] Batch [3299]       Speed: 71.444014 samples/sec    accuracy=0.215246       lr=0.010000
Epoch[0] Batch [3349]       Speed: 71.080322 samples/sec    accuracy=0.215821       lr=0.010000
[Epoch 0] training: accuracy=0.216037
[Epoch 0] speed: 69 samples/sec     time cost: 774.745033
[Epoch 0] validation: top1=0.271333 top5=0.843000
[Epoch 0] Current best top-1: 0.271333 vs previous -inf, saved to /var/lib/jenkins/workspace/workspace/autogluon-tutorial-course-v3/docs/_build/eval/tutorials/course/4afab4dc/.trial_0/best_checkpoint.pkl
Unable to pickle object due to the reason: Can't pickle <class '__main__.MyCifarResNet'>: it's not the same object as __main__.MyCifarResNet. This object is not saved.
Applying the state from the best checkpoint...
Unable to resume the state from the best checkpoint, using the latest state.
Finished, total runtime is 798.08 s
{ 'best_config': { 'batch_size': 16,
                   'custom_net': MyCifarResNet(
  (features): HybridSequential(
    (0): Conv2D(None -> 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
    (1): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None)
    (2): HybridSequential(
      (0): CIFARBasicBlockV1(
        (body): HybridSequential(
          (0): Conv2D(16 -> 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (1): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None)
          (2): Activation(relu)
          (3): Conv2D(16 -> 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (4): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None)
        )
      )
      (1): CIFARBasicBlockV1(
        (body): HybridSequential(
          (0): Conv2D(16 -> 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (1): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None)
          (2): Activation(relu)
          (3): Conv2D(16 -> 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (4): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None)
        )
      )
      (2): CIFARBasicBlockV1(
        (body): HybridSequential(
          (0): Conv2D(16 -> 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (1): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None)
          (2): Activation(relu)
          (3): Conv2D(16 -> 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (4): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None)
        )
      )
    )
    (3): HybridSequential(
      (0): CIFARBasicBlockV1(
        (body): HybridSequential(
          (0): Conv2D(16 -> 32, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
          (1): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None)
          (2): Activation(relu)
          (3): Conv2D(32 -> 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (4): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None)
        )
        (downsample): HybridSequential(
          (0): Conv2D(16 -> 32, kernel_size=(1, 1), stride=(2, 2), bias=False)
          (1): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None)
        )
      )
      (1): CIFARBasicBlockV1(
        (body): HybridSequential(
          (0): Conv2D(32 -> 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (1): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None)
          (2): Activation(relu)
          (3): Conv2D(32 -> 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (4): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None)
        )
      )
      (2): CIFARBasicBlockV1(
        (body): HybridSequential(
          (0): Conv2D(32 -> 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (1): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None)
          (2): Activation(relu)
          (3): Conv2D(32 -> 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (4): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None)
        )
      )
      (3): CIFARBasicBlockV1(
        (body): HybridSequential(
          (0): Conv2D(32 -> 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (1): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None)
          (2): Activation(relu)
          (3): Conv2D(32 -> 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (4): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None)
        )
      )
      (4): CIFARBasicBlockV1(
        (body): HybridSequential(
          (0): Conv2D(32 -> 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (1): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None)
          (2): Activation(relu)
          (3): Conv2D(32 -> 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (4): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None)
        )
      )
      (5): CIFARBasicBlockV1(
        (body): HybridSequential(
          (0): Conv2D(32 -> 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (1): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None)
          (2): Activation(relu)
          (3): Conv2D(32 -> 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (4): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None)
        )
      )
      (6): CIFARBasicBlockV1(
        (body): HybridSequential(
          (0): Conv2D(32 -> 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (1): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None)
          (2): Activation(relu)
          (3): Conv2D(32 -> 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (4): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None)
        )
      )
      (7): CIFARBasicBlockV1(
        (body): HybridSequential(
          (0): Conv2D(32 -> 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (1): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None)
          (2): Activation(relu)
          (3): Conv2D(32 -> 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (4): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None)
        )
      )
    )
    (4): HybridSequential(
      (0): CIFARBasicBlockV1(
        (body): HybridSequential(
          (0): Conv2D(32 -> 64, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
          (1): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None)
          (2): Activation(relu)
          (3): Conv2D(64 -> 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (4): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None)
        )
        (downsample): HybridSequential(
          (0): Conv2D(32 -> 64, kernel_size=(1, 1), stride=(2, 2), bias=False)
          (1): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None)
        )
      )
    )
    (5): GlobalAvgPool2D(size=(1, 1), stride=(1, 1), padding=(0, 0), ceil_mode=True, global_pool=True, pool_type=avg, layout=NCHW)
  )
  (output): Dense(64 -> 10, linear)
),
                   'custom_optimizer': <__main__.Adam object at 0x7f339016de50>,
                   'dist_ip_addrs': None,
                   'early_stop_baseline': -inf,
                   'early_stop_max_value': inf,
                   'early_stop_patience': 10,
                   'epochs': 1,
                   'final_fit': False,
                   'gpus': [0],
                   'log_dir': '/var/lib/jenkins/workspace/workspace/autogluon-tutorial-course-v3/docs/_build/eval/tutorials/course/4afab4dc',
                   'lr': 0.01,
                   'model': 'resnet50',
                   'ngpus_per_trial': 1,
                   'nthreads_per_trial': 128,
                   'num_trials': 1,
                   'num_workers': 8,
                   'problem_type': 'multiclass',
                   'scheduler': 'local',
                   'search_strategy': 'random',
                   'searcher': 'random',
                   'seed': 152,
                   'time_limits': 7200,
                   'wall_clock_tick': 1634595692.526918},
  'total_time': 784.789101600647,
  'train_acc': 0.21603703703703703,
  'valid_acc': 0.2713333333333333}
print(classifier.fit_summary())
{'train_acc': 0.21603703703703703, 'valid_acc': 0.2713333333333333, 'total_time': 784.789101600647, 'best_config': {'model': 'resnet50', 'lr': 0.01, 'num_trials': 1, 'epochs': 1, 'batch_size': 16, 'nthreads_per_trial': 128, 'ngpus_per_trial': 1, 'time_limits': 7200, 'search_strategy': 'random', 'dist_ip_addrs': None, 'log_dir': '/var/lib/jenkins/workspace/workspace/autogluon-tutorial-course-v3/docs/_build/eval/tutorials/course/4afab4dc', 'searcher': 'random', 'scheduler': 'local', 'custom_net': MyCifarResNet(
  (features): HybridSequential(
    (0): Conv2D(None -> 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
    (1): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None)
    (2): HybridSequential(
      (0): CIFARBasicBlockV1(
        (body): HybridSequential(
          (0): Conv2D(16 -> 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (1): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None)
          (2): Activation(relu)
          (3): Conv2D(16 -> 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (4): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None)
        )
      )
      (1): CIFARBasicBlockV1(
        (body): HybridSequential(
          (0): Conv2D(16 -> 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (1): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None)
          (2): Activation(relu)
          (3): Conv2D(16 -> 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (4): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None)
        )
      )
      (2): CIFARBasicBlockV1(
        (body): HybridSequential(
          (0): Conv2D(16 -> 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (1): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None)
          (2): Activation(relu)
          (3): Conv2D(16 -> 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (4): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None)
        )
      )
    )
    (3): HybridSequential(
      (0): CIFARBasicBlockV1(
        (body): HybridSequential(
          (0): Conv2D(16 -> 32, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
          (1): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None)
          (2): Activation(relu)
          (3): Conv2D(32 -> 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (4): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None)
        )
        (downsample): HybridSequential(
          (0): Conv2D(16 -> 32, kernel_size=(1, 1), stride=(2, 2), bias=False)
          (1): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None)
        )
      )
      (1): CIFARBasicBlockV1(
        (body): HybridSequential(
          (0): Conv2D(32 -> 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (1): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None)
          (2): Activation(relu)
          (3): Conv2D(32 -> 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (4): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None)
        )
      )
      (2): CIFARBasicBlockV1(
        (body): HybridSequential(
          (0): Conv2D(32 -> 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (1): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None)
          (2): Activation(relu)
          (3): Conv2D(32 -> 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (4): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None)
        )
      )
      (3): CIFARBasicBlockV1(
        (body): HybridSequential(
          (0): Conv2D(32 -> 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (1): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None)
          (2): Activation(relu)
          (3): Conv2D(32 -> 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (4): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None)
        )
      )
      (4): CIFARBasicBlockV1(
        (body): HybridSequential(
          (0): Conv2D(32 -> 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (1): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None)
          (2): Activation(relu)
          (3): Conv2D(32 -> 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (4): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None)
        )
      )
      (5): CIFARBasicBlockV1(
        (body): HybridSequential(
          (0): Conv2D(32 -> 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (1): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None)
          (2): Activation(relu)
          (3): Conv2D(32 -> 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (4): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None)
        )
      )
      (6): CIFARBasicBlockV1(
        (body): HybridSequential(
          (0): Conv2D(32 -> 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (1): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None)
          (2): Activation(relu)
          (3): Conv2D(32 -> 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (4): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None)
        )
      )
      (7): CIFARBasicBlockV1(
        (body): HybridSequential(
          (0): Conv2D(32 -> 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (1): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None)
          (2): Activation(relu)
          (3): Conv2D(32 -> 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (4): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None)
        )
      )
    )
    (4): HybridSequential(
      (0): CIFARBasicBlockV1(
        (body): HybridSequential(
          (0): Conv2D(32 -> 64, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
          (1): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None)
          (2): Activation(relu)
          (3): Conv2D(64 -> 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (4): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None)
        )
        (downsample): HybridSequential(
          (0): Conv2D(32 -> 64, kernel_size=(1, 1), stride=(2, 2), bias=False)
          (1): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None)
        )
      )
    )
    (5): GlobalAvgPool2D(size=(1, 1), stride=(1, 1), padding=(0, 0), ceil_mode=True, global_pool=True, pool_type=avg, layout=NCHW)
  )
  (output): Dense(64 -> 10, linear)
), 'custom_optimizer': <__main__.Adam object at 0x7f339016de50>, 'early_stop_patience': 10, 'early_stop_baseline': -inf, 'early_stop_max_value': inf, 'num_workers': 8, 'gpus': [0], 'seed': 152, 'final_fit': False, 'wall_clock_tick': 1634595692.526918, 'problem_type': 'multiclass'}, 'fit_history': {'train_acc': 0.21603703703703703, 'valid_acc': 0.2713333333333333, 'total_time': 784.789101600647, 'best_config': {'model': 'resnet50', 'lr': 0.01, 'num_trials': 1, 'epochs': 1, 'batch_size': 16, 'nthreads_per_trial': 128, 'ngpus_per_trial': 1, 'time_limits': 7200, 'search_strategy': 'random', 'dist_ip_addrs': None, 'log_dir': '/var/lib/jenkins/workspace/workspace/autogluon-tutorial-course-v3/docs/_build/eval/tutorials/course/4afab4dc', 'searcher': 'random', 'scheduler': 'local', 'custom_net': MyCifarResNet(
  (features): HybridSequential(
    (0): Conv2D(None -> 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
    (1): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None)
    (2): HybridSequential(
      (0): CIFARBasicBlockV1(
        (body): HybridSequential(
          (0): Conv2D(16 -> 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (1): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None)
          (2): Activation(relu)
          (3): Conv2D(16 -> 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (4): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None)
        )
      )
      (1): CIFARBasicBlockV1(
        (body): HybridSequential(
          (0): Conv2D(16 -> 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (1): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None)
          (2): Activation(relu)
          (3): Conv2D(16 -> 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (4): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None)
        )
      )
      (2): CIFARBasicBlockV1(
        (body): HybridSequential(
          (0): Conv2D(16 -> 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (1): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None)
          (2): Activation(relu)
          (3): Conv2D(16 -> 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (4): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None)
        )
      )
    )
    (3): HybridSequential(
      (0): CIFARBasicBlockV1(
        (body): HybridSequential(
          (0): Conv2D(16 -> 32, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
          (1): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None)
          (2): Activation(relu)
          (3): Conv2D(32 -> 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (4): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None)
        )
        (downsample): HybridSequential(
          (0): Conv2D(16 -> 32, kernel_size=(1, 1), stride=(2, 2), bias=False)
          (1): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None)
        )
      )
      (1): CIFARBasicBlockV1(
        (body): HybridSequential(
          (0): Conv2D(32 -> 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (1): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None)
          (2): Activation(relu)
          (3): Conv2D(32 -> 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (4): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None)
        )
      )
      (2): CIFARBasicBlockV1(
        (body): HybridSequential(
          (0): Conv2D(32 -> 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (1): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None)
          (2): Activation(relu)
          (3): Conv2D(32 -> 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (4): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None)
        )
      )
      (3): CIFARBasicBlockV1(
        (body): HybridSequential(
          (0): Conv2D(32 -> 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (1): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None)
          (2): Activation(relu)
          (3): Conv2D(32 -> 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (4): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None)
        )
      )
      (4): CIFARBasicBlockV1(
        (body): HybridSequential(
          (0): Conv2D(32 -> 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (1): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None)
          (2): Activation(relu)
          (3): Conv2D(32 -> 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (4): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None)
        )
      )
      (5): CIFARBasicBlockV1(
        (body): HybridSequential(
          (0): Conv2D(32 -> 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (1): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None)
          (2): Activation(relu)
          (3): Conv2D(32 -> 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (4): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None)
        )
      )
      (6): CIFARBasicBlockV1(
        (body): HybridSequential(
          (0): Conv2D(32 -> 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (1): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None)
          (2): Activation(relu)
          (3): Conv2D(32 -> 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (4): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None)
        )
      )
      (7): CIFARBasicBlockV1(
        (body): HybridSequential(
          (0): Conv2D(32 -> 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (1): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None)
          (2): Activation(relu)
          (3): Conv2D(32 -> 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (4): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None)
        )
      )
    )
    (4): HybridSequential(
      (0): CIFARBasicBlockV1(
        (body): HybridSequential(
          (0): Conv2D(32 -> 64, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
          (1): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None)
          (2): Activation(relu)
          (3): Conv2D(64 -> 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (4): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None)
        )
        (downsample): HybridSequential(
          (0): Conv2D(32 -> 64, kernel_size=(1, 1), stride=(2, 2), bias=False)
          (1): BatchNorm(axis=1, eps=1e-05, momentum=0.9, fix_gamma=False, use_global_stats=False, in_channels=None)
        )
      )
    )
    (5): GlobalAvgPool2D(size=(1, 1), stride=(1, 1), padding=(0, 0), ceil_mode=True, global_pool=True, pool_type=avg, layout=NCHW)
  )
  (output): Dense(64 -> 10, linear)
), 'custom_optimizer': <__main__.Adam object at 0x7f339016de50>, 'early_stop_patience': 10, 'early_stop_baseline': -inf, 'early_stop_max_value': inf, 'num_workers': 8, 'gpus': [0], 'seed': 152, 'final_fit': False, 'wall_clock_tick': 1634595692.526918, 'problem_type': 'multiclass'}}}