.. _sec_imgadvanced: Image Prediction - Search Space and Hyperparameter Optimization (HPO) ===================================================================== While the :ref:`sec_imgquick` introduced basic usage of AutoGluon ``fit``, ``evaluate``, ``predict`` with default configurations, this tutorial dives into the various options that you can specify for more advanced control over the fitting process. These options include: - Defining the search space of various hyperparameter values for the training of neural networks - Specifying how to search through your choosen hyperparameter space - Specifying how to schedule jobs to train a network under a particular hyperparameter configuration. The advanced functionalities of AutoGluon enable you to use your external knowledge about your particular prediction problem and computing resources to guide the training process. If properly used, you may be able to achieve superior performance within less training time. **Tip**: If you are new to AutoGluon, review :ref:`sec_imgquick` to learn the basics of the AutoGluon API. Since our task is to classify images, we will use AutoGluon to produce an `ImagePredictor <../../api/autogluon.predictor.html#autogluon.vision.ImagePredictor>`__: .. code:: python import autogluon.core as ag from autogluon.vision import ImagePredictor, ImageDataset .. parsed-literal:: :class: output /var/lib/jenkins/workspace/workspace/autogluon-tutorial-image-classification-v3/venv/lib/python3.7/site-packages/gluoncv/__init__.py:40: UserWarning: Both `mxnet==1.7.0` and `torch==1.7.1+cu101` are installed. You might encounter increased GPU memory footprint if both framework are used at the same time. warnings.warn(f'Both `mxnet=={mx.__version__}` and `torch=={torch.__version__}` are installed. ' Create AutoGluon Dataset ------------------------ Let's first create the dataset using the same subset of the ``Shopee-IET`` dataset as the :ref:`sec_imgquick` tutorial. Recall that there's no validation split in original data, a 90/10 train/validation split is automatically performed when ``fit`` with ``train_data``. .. code:: python train_data, _, test_data = ImageDataset.from_folders('https://autogluon.s3.amazonaws.com/datasets/shopee-iet.zip') .. parsed-literal:: :class: output data/ ├── test/ └── train/ Specify which Networks to Try ----------------------------- We start with specifying the pretrained neural network candidates. Given such a list, AutoGluon tries to train different networks from this list to identify the best-performing candidate. This is an example of a :class:`autogluon.core.space.Categorical` search space, in which there are a limited number of values to choose from. .. code:: python model = ag.Categorical('resnet18_v1b', 'mobilenetv3_small') # you may choose more than 70+ available model in the model zoo provided by GluonCV: model_list = ImagePredictor.list_models() Specify the training hyper-parameters ------------------------------------- Similarly, we can manually specify many crucial hyper-parameters, with specific value or search space(\ ``autogluon.core.space``). .. code:: python batch_size = 8 lr = ag.Categorical(1e-2, 1e-3) Search Algorithms ----------------- In AutoGluon, ``autogluon.core.searcher`` supports different search search strategies for both hyperparameter optimization and architecture search. Beyond simply specifying the space of hyperparameter configurations to search over, you can also tell AutoGluon what strategy it should employ to actually search through this space. This process of finding good hyperparameters from a given search space is commonly referred to as *hyperparameter optimization* (HPO) or *hyperparameter tuning*. ``autogluon.core.scheduler`` orchestrates how individual training jobs are scheduled. We currently support FIFO (standard) and Hyperband scheduling, along with search by random sampling or Bayesian optimization. These basic techniques are rendered surprisingly powerful by AutoGluon's support of asynchronous parallel execution. Bayesian Optimization ~~~~~~~~~~~~~~~~~~~~~ Here is an example of using Bayesian Optimization using :class:`autogluon.core.searcher.GPFIFOSearcher`. Bayesian Optimization fits a probabilistic *surrogate model* to estimate the function that relates each hyperparameter configuration to the resulting performance of a model trained under this hyperparameter configuration. Our implementation makes use of a Gaussian process surrogate model along with expected improvement as acquisition function. It has been developed specifically to support asynchronous parallel evaluations. .. code:: python hyperparameters={'model': model, 'batch_size': batch_size, 'lr': lr, 'epochs': 2} predictor = ImagePredictor() predictor.fit(train_data, time_limit=60*10, hyperparameters=hyperparameters, hyperparameter_tune_kwargs={'searcher': 'bayesopt', 'num_trials': 2}) print('Top-1 val acc: %.3f' % predictor.fit_summary()['valid_acc']) .. parsed-literal:: :class: output Reset labels to [0, 1, 2, 3] Randomly split train_data into train[720]/validation[80] splits. The number of requested GPUs is greater than the number of available GPUs.Reduce the number to 1 Starting HPO experiments .. parsed-literal:: :class: output 0%| | 0/2 [00:00 != ): { root.train.rec_train ~/.mxnet/datasets/imagenet/rec/train.rec != auto root.train.rec_val_idx ~/.mxnet/datasets/imagenet/rec/val.idx != auto root.train.early_stop_patience -1 != 10 root.train.early_stop_baseline 0.0 != -inf root.train.rec_train_idx ~/.mxnet/datasets/imagenet/rec/train.idx != auto root.train.lr 0.1 != 0.01 root.train.data_dir ~/.mxnet/datasets/imagenet != auto root.train.rec_val ~/.mxnet/datasets/imagenet/rec/val.rec != auto root.train.epochs 10 != 2 root.train.num_workers 4 != 8 root.train.early_stop_max_value 1.0 != inf root.train.num_training_samples 1281167 != -1 root.train.batch_size 128 != 8 root.img_cls.model resnet50_v1 != resnet18_v1b root.valid.batch_size 128 != 8 root.valid.num_workers 4 != 8 } Saved config to /var/lib/jenkins/workspace/workspace/autogluon-tutorial-image-classification-v3/docs/_build/eval/tutorials/image_prediction/29c4db4f/.trial_0/config.yaml Start training from [Epoch 0] Epoch[0] Batch [49] Speed: 228.820449 samples/sec accuracy=0.385000 lr=0.010000 [Epoch 0] training: accuracy=0.456944 [Epoch 0] speed: 240 samples/sec time cost: 2.957888 [Epoch 0] validation: top1=0.750000 top5=1.000000 [Epoch 0] Current best top-1: 0.750000 vs previous -inf, saved to /var/lib/jenkins/workspace/workspace/autogluon-tutorial-image-classification-v3/docs/_build/eval/tutorials/image_prediction/29c4db4f/.trial_0/best_checkpoint.pkl Epoch[1] Batch [49] Speed: 248.092983 samples/sec accuracy=0.642500 lr=0.010000 [Epoch 1] training: accuracy=0.623611 [Epoch 1] speed: 251 samples/sec time cost: 2.830312 [Epoch 1] validation: top1=0.825000 top5=1.000000 [Epoch 1] Current best top-1: 0.825000 vs previous 0.750000, saved to /var/lib/jenkins/workspace/workspace/autogluon-tutorial-image-classification-v3/docs/_build/eval/tutorials/image_prediction/29c4db4f/.trial_0/best_checkpoint.pkl Applying the state from the best checkpoint... modified configs( != ): { root.train.rec_train ~/.mxnet/datasets/imagenet/rec/train.rec != auto root.train.rec_val_idx ~/.mxnet/datasets/imagenet/rec/val.idx != auto root.train.early_stop_patience -1 != 10 root.train.early_stop_baseline 0.0 != -inf root.train.rec_train_idx ~/.mxnet/datasets/imagenet/rec/train.idx != auto root.train.lr 0.1 != 0.001 root.train.data_dir ~/.mxnet/datasets/imagenet != auto root.train.rec_val ~/.mxnet/datasets/imagenet/rec/val.rec != auto root.train.epochs 10 != 2 root.train.num_workers 4 != 8 root.train.early_stop_max_value 1.0 != inf root.train.num_training_samples 1281167 != -1 root.train.batch_size 128 != 8 root.img_cls.model resnet50_v1 != mobilenetv3_small root.valid.batch_size 128 != 8 root.valid.num_workers 4 != 8 } Saved config to /var/lib/jenkins/workspace/workspace/autogluon-tutorial-image-classification-v3/docs/_build/eval/tutorials/image_prediction/29c4db4f/.trial_1/config.yaml Start training from [Epoch 0] Epoch[0] Batch [49] Speed: 139.202653 samples/sec accuracy=0.260000 lr=0.001000 [Epoch 0] training: accuracy=0.279167 [Epoch 0] speed: 145 samples/sec time cost: 4.900340 [Epoch 0] validation: top1=0.325000 top5=1.000000 [Epoch 0] Current best top-1: 0.325000 vs previous -inf, saved to /var/lib/jenkins/workspace/workspace/autogluon-tutorial-image-classification-v3/docs/_build/eval/tutorials/image_prediction/29c4db4f/.trial_1/best_checkpoint.pkl Epoch[1] Batch [49] Speed: 144.357751 samples/sec accuracy=0.287500 lr=0.001000 [Epoch 1] training: accuracy=0.301389 [Epoch 1] speed: 149 samples/sec time cost: 4.767185 [Epoch 1] validation: top1=0.375000 top5=1.000000 [Epoch 1] Current best top-1: 0.375000 vs previous 0.325000, saved to /var/lib/jenkins/workspace/workspace/autogluon-tutorial-image-classification-v3/docs/_build/eval/tutorials/image_prediction/29c4db4f/.trial_1/best_checkpoint.pkl Applying the state from the best checkpoint... Finished, total runtime is 24.93 s { 'best_config': { 'estimator': , 'gpus': [0], 'img_cls': { 'batch_norm': False, 'last_gamma': False, 'model': 'resnet18_v1b', 'use_gn': False, 'use_pretrained': True, 'use_se': False}, 'train': { 'batch_size': 8, 'crop_ratio': 0.875, 'data_dir': 'auto', 'dtype': 'float32', 'early_stop_baseline': -inf, 'early_stop_max_value': inf, 'early_stop_min_delta': 0.001, 'early_stop_patience': 10, 'epochs': 2, 'hard_weight': 0.5, 'input_size': 224, 'label_smoothing': False, 'log_interval': 50, 'lr': 0.01, 'lr_decay': 0.1, 'lr_decay_epoch': '40, 60', 'lr_decay_period': 0, 'lr_mode': 'step', 'mixup': False, 'mixup_alpha': 0.2, 'mixup_off_epoch': 0, 'mode': '', 'momentum': 0.9, 'no_wd': False, 'num_training_samples': -1, 'num_workers': 8, 'output_lr_mult': 0.1, 'pretrained_base': True, 'rec_train': 'auto', 'rec_train_idx': 'auto', 'rec_val': 'auto', 'rec_val_idx': 'auto', 'resume_epoch': 0, 'start_epoch': 0, 'teacher': None, 'temperature': 20, 'transfer_lr_mult': 0.01, 'use_rec': False, 'warmup_epochs': 0, 'warmup_lr': 0.0, 'wd': 0.0001}, 'valid': {'batch_size': 8, 'num_workers': 8}}, 'total_time': 24.926369428634644, 'train_acc': 0.3013888888888889, 'valid_acc': 0.375} .. parsed-literal:: :class: output Top-1 val acc: 0.375 The BO searcher can be configured by ``search_options``, see :class:`autogluon.core.searcher.GPFIFOSearcher`. Load the test dataset and evaluate: .. code:: python results = predictor.evaluate(test_data) print('Test acc on hold-out data:', results) .. parsed-literal:: :class: output Test acc on hold-out data: {'top1': 0.7625, 'top5': 1.0} Note that ``num_trials=2`` above is only used to speed up the tutorial. In normal practice, it is common to only use ``time_limit`` and drop ``num_trials``.